精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠B=90°AC=10cmBC=6cm,现有两点PQ的分别从点A和点C同时出发,沿边ABCB向终点B移动.已知点PQ的速度分别为2cm/s1cm/s,且当其中一点到达终点时,另一点也随之停止移动,设PQ两点移动时间为xs.问是否存在这样的x,使得四边形APQC的面积等于16cm2?若存在,请求出此时x的值;若不存在,请说明理由.

【答案】2

【解析】

根据四边形APQC的面积=△ABC的面积PBQ的面积,列出方程,根据解的情况即可判断.

解:∵∠B90°,AC10BC6

AB8

BQ6xPB82x

假设存在x的值,使得四边形APQC的面积等于16cm2

×6×86x)(82x)=16

整理得:x210x160

解得x28(舍弃)

∴当t2s时四边形APQC面积的面积为等于16cm2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如果三角形的两个内角αβ满足2α+β=90°,那么我们称这样的三角形为准互余三角形”.

(1)若ABC准互余三角形”,C>90°,A=60°,则∠B=   °;

(2)如图①,在RtABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明ABD准互余三角形.试问在边BC上是否存在点E(异于点D),使得ABE也是准互余三角形?若存在,请求出BE的长;若不存在,请说明理由.

(3)如图②,在四边形ABCD中,AB=7,CD=12,BDCD,ABD=2BCD,且ABC准互余三角形,求对角线AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么我们称抛物线C1C2关联.

1)已知抛物线C1y=﹣2x2+4x+3C2y2x2+4x1,请判断抛物线C1与抛物线C2是否关联,并说明理由.

2)抛物线C1,动点P的坐标为(t2),将抛物线绕点P旋转180°得到抛物线C2,若抛物线C1C2关联,求抛物线C2的解析式.

3)点A为抛物线C1的顶点,点B为抛物线C1关联的抛物线的顶点,是否存在以AB为斜边的等腰直角三角形ABC,使其直角顶点C在直线x=﹣10上?若存在,求出C点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】每年的93日是中国人民抗日战争胜利纪念日,某红色旅游景区为纪念抗日战争胜利73周年,今年9~10月份,对团体购买门票实行优惠,决定在原定票价基础上每张降价16元,这样按原定票价需花费2000元购买的门票张数,现在只花费了1200.

(1)求每张门票的原定票价;

(2)根据实际情况,该景区决定对网上购票的个人也采取优惠,原定票价经过连续两次降价后票价为每张32.4元,求原定票价平均每次的下降率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图像与轴交于两点,交轴于点,点是二次函数图像上的一对对称点,一次函数的图像经过

1)请直接写出点的坐标;

2)求二次函数的解析式;

3)根据图像直接写出使一次函数值大于二次函数值的的取值范围;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y=的图象经过点D,与BC的交点为N.

(1)求反比例函数和一次函数的解析式;

(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接与⊙OAB是直径,⊙O的切线PCBA的延长线于点POF∥BCACACE,交PC于点F,连接AF

1)判断AF⊙O的位置关系并说明理由;

2)若⊙O的半径为4AF=3,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y2x2+bx+c经过(﹣30),(10)两点

1)求抛物线的解析式,并求出其开口方向和对称轴

2)用配方法求出该抛物线的顶点坐标.

查看答案和解析>>

同步练习册答案