精英家教网 > 初中数学 > 题目详情

【题目】用规定的方法解方程:
(1)x2﹣x﹣2=0;(公式法)
(2)x2﹣7=﹣6x.(配方法)

【答案】
(1)解:x2﹣x﹣2=0.

∵a=1,b=﹣1,c=2,

∴△=b2﹣4ac=(﹣1)2﹣4×1×(﹣2)=9>0,

∴x= =

解得x1=2,x2=﹣1;


(2)解:由原方程,得

x2+6x﹣7=0

x2+6x+9=7+9

(x+3)2=16

开方得x+3=±4,

∴x1=1,x2=﹣7.


【解析】(1)利用求根公式x= 解方程;(2)解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.
【考点精析】掌握公式法是解答本题的根本,需要知道要用公式解方程,首先化成一般式.调整系数随其后,使其成为最简比.确定参数abc,计算方程判别式.判别式值与零比,有无实根便得知.有实根可套公式,没有实根要告之.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y= 的图象交于A,B两点,则四边形MAOB的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:

(1)表示乙离A地的距离与时间关系的图象是 (填);

(2)甲的速度是 km/h,乙的速度是 km/h;

(3)甲出发多少小时两人恰好相距5km?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示:抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且经过点(﹣1,0),康康依据图象写出了四个结论:
①如果点(﹣ ,y1)和(2,y2)都在抛物线上,那么y1<y2
②b2﹣4ac>0;
③m(am+b)<a+b(m≠1的实数);
=﹣3.
康康所写的四个结论中,正确的有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠ACB=90°,AC=BC,D为边BC上的一点,连接AD,过点CAD的垂线,交过点B与边AC平行的直线于点E,CE交边AB于点F.

(1)求∠EBF的度数;

(2)求证:ACD≌△CBE;

(3)AD平分∠BAC,判断BEF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中, 厘米, 厘米,点DAB的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为_______ 厘米/秒时,能够在某一时刻使BPDCQP全等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.

(1)求证:∠AEB=∠ADC;

(2)连接DE,若ADC=105°,求BED的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一艘海轮位于灯塔P的北偏东60°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的东南方向上的B处.这时,海轮所在的B处距离灯塔P有多远?(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1,ABC是等腰直角三角形,∠BAC=90°,DE是经过点A的直线,作BDDE,CEDE,

(1)求证:DE=BD+CE.

(2)如果是如图2这个图形,我们能得到什么结论?并证明.

查看答案和解析>>

同步练习册答案