【题目】已知:二次函数C1:y1=ax2+2ax+a﹣1(a≠0)
(1)把二次函数C1的表达式化成y=a(x﹣h)2+b(a≠0)的形式,并写出顶点坐标;
(2)已知二次函数C1的图象经过点A(﹣3,1).
①求a的值;
②点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB.二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,求k的取值范围.
【答案】(1)y1=a(x+1)2﹣1,顶点为(﹣1,﹣1);(2)①;②k的取值范围是≤k≤或k=﹣4.
【解析】
(1)化成顶点式即可求得;
(2)①把点A(﹣3,1)代入二次函数C1:y1=ax2+2ax+a﹣1即可求得a的值;
②根据对称的性质得出B的坐标,然后分两种情况讨论即可求得;
(1)y1=ax2+2ax+a﹣1=a(x+1)2﹣1,
∴顶点为(﹣1,﹣1);
(2)①∵二次函数C1的图象经过点A(﹣3,1),
∴a(﹣3+1)2﹣1=1,
∴a=;
②∵A(﹣3,1),对称轴为直线x=﹣1,
∴B(1,1),
当k>0时,
二次函数C2:y2=kx2+kx(k≠0)的图象经过A(﹣3,1)时,1=9k﹣3k,解得k=,
二次函数C2:y2=kx2+kx(k≠0)的图象经过B(1,1)时,1=k+k,解得k=,
∴≤k≤,
当k<0时,∵二次函数C2:y2=kx2+kx=k(x+)2﹣k,
∴﹣k=1,
∴k=﹣4,
综上,二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,k的取值范围是≤k≤或k=﹣4.
科目:初中数学 来源: 题型:
【题目】“双十一购物狂欢节”来临之际,某超市拟举办购物促销活动,从分店调动了20名店员参与总店活动,其中男店员8人,女店员12人.
(1)若从这20人中随机选取一人作为宣传人员,求选到女店员的概率;
(2)分店的某活动中需要甲、乙两店员中选一人参与,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加,请用树状图或列表法分别求出甲、乙两人参加这项活动的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题发现:
()如图①,中,,,,点是边上任意一点,则的最小值为__________.
()如图②,矩形中,,,点、点分别在、上,求的最小值.
()如图③,矩形中,,,点是边上一点,且,点是边上的任意一点,把沿翻折,点的对应点为点,连接、,四边形的面积是否存在最小值,若存在,求这个最小值及此时的长度;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】经中共中央决定设立河北雄安新区,这一重大措施必将带动首都及周边区域向更高水平发展,同时也会带来更多商机.某水果经销商在第一周购进一批水果1160件,预计在第二周进行试销,购进价格为每件10元,若售价为每件12元,则可全部售出;若售价每涨价0.1元,销量就减少2件.
(1)若该经销商在第二周的销量不低于1100件,则售价应不高于多少元?
(2)由于销量较好,第三周水果进价比第一周每件增加了20%,该经销商增加了进货量,并加强了宣传力度,结果第三周的销量比第二周在(1)条件下的最低销量增加了m%,但售价比第二周在(1)条件下的最高售价减少了m%,结果第三周利润达到3388元,求m的值(m>10).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:在数学课上,老师提出如下问题:
尺规作图,过圆外一点作圆的切线.
已知:⊙O和点P
求过点P的⊙O的切线
小涵的主要作法如下:
如图,(1)连结OP,作线段OP的中点A;
(2)以A为圆心,OA长为半径作圆,交⊙O于点B,C;
(3)作直线PB和PC.
所以PB和PC就是所求的切线.
老师说:“小涵的做法正确的.”
请回答:小涵的作图依据是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一个转盘.转盘分成8个相同的图形,颜色分为红、绿、黄三种.指针的位置固定,转动转盘后任其兹有停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个图形的交线时,当作指向右边的图形).求下列事件的概率:
(1)指针指向红色;
(2)指针指向黄色或绿色。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解我市居民用水情况,在某小区随机抽查了20户家庭,并将这些家庭的月用水量进行统计,结果如下表:
月用水量(吨) | 4 | 5 | 6 | 8 | 13 |
户数 | 4 | 5 | 7 | 3 | 1 |
则关于这20户家庭的月用水量,下列说法正确的是( )
A.中位数是5B.平均数是5C.众数是6D.方差是6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(问题背景)如图1所示,在中,,,点D为直线上的个动点(不与B、C重合),连结,将线段绕点D按顺时针方向旋转90°,使点A旋转到点E,连结.
(问题初探)如果点D在线段上运动,通过观察、交流,小明形成了以下的解题思路:过点E作交直线于F,如图2所示,通过证明______,可推证是_____三角形,从而求得______°.
(继续探究)如果点D在线段的延长线上运动,如图3所示,求出的度数.
(拓展延伸)连接,当点D在直线上运动时,若,请直接写出的最小值.
图1 图2 图3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段AB的最小覆盖圆就是以线段AB为直径的圆.
(1)请分别作出下图中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);
(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论(不要求证明).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com