【题目】如图,AB 是⊙O 的直径,点 C 在⊙O 上,∠BAC=46°,点 P 在线段 OB上运动.设∠APC=x°,则 x的取值范围为____.
科目:初中数学 来源: 题型:
【题目】如图,已知点A(1,a)是反比例函数的图象上一点,直线与反比例函数的图象在第四象限的交点为点B.
(1)求直线AB的解析式;
(2)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年上半年,住房和城乡建设等9部门决定在全国地级以上城市全面启动生活垃分类工作.圾分类有利于对垃圾进行分流处理,势在必行.为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,西街中学团委对七年级一,二两班各69名学生进行了垃极分类相关知识的测试,并分别抽取了15份成绩,整理分析过程如下,请补充完整.
(收集数据)
一班15名学生测试成绩统计如下:(满分100分)
68,72,89,85,82,85,74,92,80,85,78,85,69,76,80
二班15名学生测试成绩统计如下:(满分100分)
86,89,83,76,73,78,67,80,80,79,80,84,82,80,83
(整理数据)
(1)按如下分数段整理、描述这两组样本数据
组别 频数 | 65.5~70.5 | 70.5~75.5 | 75.5~80.5 | 80.5~85.5 | 85.5~90.5 | 90.5~95.5 |
一 | 2 | 2 | 4 | 5 | 1 | 1 |
二 | 1 | 1 | a | b | 2 | 0 |
在表中,a= ,b= .
(分析数据)
(2)两组样本数据的平均数、众数、中位数、方差如下表所示:
班级 | 平均数 | 众数 | 中位数 | 方差 |
一 | 80 | x | 80 | 47.6 |
二 | 80 | 80 | y | z |
在表中:x= ,y= .
(3)若规定得分在80分及以上(含80分)为合格,请估计二班69名学生中垃极分类及投放相关知识合格的学生有 人.
(4)你认为哪个班的学生掌握垃圾分类相关知识的整体水平较好,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】张华为体育测试做准备,每天爬家对面的翠山,张华从西坡沿坡角为35°的山坡爬了2000米,紧接着又爬了坡角为45°的山坡800米,最后到达山顶;请你计算翠山的高度.(结果精确到个位,参考数据:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.
(1)求证:BC为⊙O的切线;
(2)连接AE并延长与BC的延长线交于点G(如图②所示).若AB=,CD=9,求线段BC和EG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数(>0)与一次函数的图像交于B,C两点,一次函数图像与y轴交于点A.
(1)当k=3,a+b=4时,
①求B,C两点的坐标;
②求△OBC的面积;
(2)当k=1时,设B、C两点坐标为 B(a,b)(a≥2)、C(c,d)(点B、C不重合).
①求ac的值;
②设△OAC面积为,求与b的函数关系式,并直接写出的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:二次函数 中的和满足下表:
… | 0 | 1 | 2 | 3 | … | ||
… | 3 | 0 | 0 | m | … |
(1) 观察上表可求得的值为________;
(2) 试求出这个二次函数的解析式;
(3) 若点A(n+2,y1),B(n,y2)在该抛物线上,且y1>y2,请直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一元二次方程中,有著名的韦达定理:对于一元二次方程ax2+bx+c=0(a≠0),如果方程有两个实数根x1,x2,那么x1+x2=,x1+x2= (说明:定理成立的条件△≥0).比如方程2x2-3x-1=0中,△=17,所以该方程有两个不等的实数解.记方程的两根为x1,x2,那么x1+x2=,x1+x2=.请阅读材料回答问题:
(1)已知方程x2-3x-2=0的两根为x1、x2,求下列各式的值:
①x12+x22;②;
(2)已知x1,x2是一元二次方程4kx2-4kx+k+1=0的两个实数根.
①是否存在实数k,使(2x1-x2)(x1-2x2)=成立?若存在,求出k的值;若不存在,请说明理由;
②求使-2的值为整数的实数k的整数值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,反比例函数的图象与一次函数的图象交于点、点.
(1)求一次函数和反比例函数的解析式;
(2)求的面积;
(3)直接写出一次函数值大于反比例函数值的自变量的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com