【题目】已知:如图,反比例函数的图象与一次函数的图象交于点、点.
(1)求一次函数和反比例函数的解析式;
(2)求的面积;
(3)直接写出一次函数值大于反比例函数值的自变量的取值范围.
【答案】(1),y=x+3;(2)S△AOB=; (3)x>1 ,12, -4 <a<0
【解析】
(1)把A的坐标代入反比例函数解析式求出A的坐标,把A的坐标代入一次函数解析式求出即可;
(2)求出直线AB与y轴的交点C的坐标,分别求出△ACO和△BOC的面积,然后相加即可;
(3)根据A、B的坐标结合图象即可得出答案.
(1)把A点(1,4)分别代入反比例函数解析式,一次函数解析式
y=kx+b,得,k=1×4,1+b=4,解得,k=4,b=3,
所以反比例函数解析式是,一次函数解析式y=x+3,
(2)如图
当X=-4时,y=-1,
∴B(-4,-1),
当y=0时,x+3=0,x=-3,
∴C(-3,0),
∴S△AOB= S△AOC+ S△BOC=
故答案为:
(3)∵B(-4,-1),A(1,4),
∴根据图象可知:当x>1或-4<x<0时,一次函数值大于反比例函数值.
科目:初中数学 来源: 题型:
【题目】如图,AB 是⊙O 的直径,点 C 在⊙O 上,∠BAC=46°,点 P 在线段 OB上运动.设∠APC=x°,则 x的取值范围为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是边长为的等边三角形,动点、同时从、两点出发,分别沿、方向匀速移动,它们的速度都是,当点到达点时,、两点停止运动,设点的运动时间.
解答下列各问题:
(1)求的面积
(2)当为何值时,是直角三角形?
(3)设四边形的面积为,求与的关系式;是否存在某一时刻,使四边形的面积是面积的三分之二?如果存在,求出的值;不存在请说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究活动一:
如图1,某数学兴趣小组在研究直线上点的坐标规律时,在直线AB上的三点A(1,3)、B(2,5)、C(4,9),有kAB==2,kAC==2,发现kAB=kAC,兴趣小组提出猜想:若直线y=kx+b(k≠0)上任意两点坐标P(x1,y1),Q(x2,y2)(x1≠x2),则kPQ=是定值.通过多次验证和查阅资料得知,猜想成立,kPQ是定值,并且是直线y=kx+b(k≠0)中的k,叫做这条直线的斜率.
请你应用以上规律直接写出过S(﹣2,﹣2)、T(4,2)两点的直线ST的斜率kST= .
探究活动二
数学兴趣小组继续深入研究直线的“斜率”问题,得到正确结论:任意两条不和坐标轴平行的直线互相要直时,这两条直线的斜率之积是定值.
如图2,直线DE与直线DF垂直于点D,D(2,2),E(1,4),F(4,3).请求出直线DE与直线DF的斜率之积.
综合应用
如图3,⊙M为以点M为圆心,MN的长为半径的圆,M(1,2),N(4,5),请结合探究活动二的结论,求出过点N的⊙M的切线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为元(为正整数),每月的销售量为条.
(1)直接写出与的函数关系式;
(2)设该网店每月获得的利润为元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学举行钢笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图.
请结合图中相关信息解答下列问题:
(1)扇形统计图中三等奖所在扇形的圆心角的度数是______度;
(2)请将条形统计图补全;
(3)获得一等奖的同学中有来自七年级,有来自九年级,其他同学均来自八年级.现准备从获得一等奖的同学中任选2人参加市级钢笔书法大赛,请通过列表或画树状图的方法求所选出的2人中既有八年级同学又有九年级同学的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com