精英家教网 > 初中数学 > 题目详情

【题目】我国魏晋时期的数学家刘徽创立了割圆术,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值,设半径为r的圆内接正n边形的周长为L,圆的直径为d,如图所示,当n6时,π≈3,那么当n12时,π≈________(结果精确到0.01,参考数据:sin15°cos75°≈0.259)

【答案】3.11

【解析】

圆的内接正十二边形被半径分成顶角为30°的十二个等腰三角形,作辅助线构造直角三角形,根据中心角的度数以及半径的大小,求得L=24rsin15°,d=2r,进而得到,π≈≈3.11

解:如图,圆的内接正十二边形被半径分成12个如图所示的等腰三角形,其顶角为30°,

即∠AOB=30°,
OHAB于点H,则∠AOH=15°,
AO=BO=r
RtAOH中,

AH=r×sin15°,AB=2AH=2r×sin15°,
L=12×2r×sin15°=24r×sin15°,
又∵d=2r

故答案为:3.11

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,山顶有一塔,塔高.计划在塔的正下方沿直线开通穿山隧道.从与点相距处测得的仰角分别为,从与点相距处测得的仰角为.求隧道的长度.(参考数据:.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新冠肺炎疫情期间,甲、乙两家网店以同样价格销售相同的防疫用品,它们的优惠方案分别为:甲店,一次性购物中超过100元后的价格部分打七折;乙店,一次性购物中超过500元后的价格部分打五折,设商品原价为元(),购物应付金额为元.

1)求出在甲店购物时之间的函数解析式;

2)在乙店购物时之间的函数图像如图所示(图中线段、射线),请在图中画出(l)中所得函数当时的图像,并分别写出该图像与图中的交点的坐标;

3)根据函数图像,请直接写出新冠肺炎疫情期间选择哪家网店购物更优惠.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】规定一种新的运算△:abaab)﹣ab.例如,121×(12)﹣124

189   

2)若x311,求x的值;

3)求代数式﹣x4的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点在反比例函数的图象上,点的延长线上,轴,垂足为与反比例函数的图象相交于点,连接

1)求该反比例函数的解析式;

2)若,设点的坐标为,求线段的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景

在综合实践课上,同学们以图形的平移与旋转为主题开展数学活动,如图(1),先将一张等边三角形纸片对折后剪开,得到两个互相重合的△ABD△EFD,点E与点A重合,点B与点F重合,然后将△EFD绕点D顺时针旋转,使点F落在边AB上,如图(2),连接EC.

操作发现

1)判断四边形BFEC的形状,并说明理由;

实践探究

2)聪聪提出疑问:若等边三角形的边长为8,能否将图(2)中的△EFD沿BC所在的直线平移a个单位长度(规定沿射线BC方向为正),得到,连接,使得得到的四边形为菱形,请你帮聪聪解决这个问题,若能,请求出a的值;若不能,请说明理由。

3)老师提出问题:请参照聪聪的思路,若等边三角形的边长为8,将图(2)中的△EFD在平面内进行一次平移,得到,画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的一个结论,不必证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形中,是射线上一点,连接,沿将三角形折叠,得三角形

1)当时,=_______度;

2)如图,当时,求线段的长度;

3)当点落在平行四边形的边上时,直接写出线段的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2014广州)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3.

1)求普通列车的行驶路程;

2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需要时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“五一”期间甲乙两商场搞促销活动,甲商场的方案是:在一个不透明的箱子里放4个完全相同的小球,球上分别标“0元”“20元”“30元”“50元”,顾客每消费满300元就可从箱子里不放回地摸出2个球,根据两个小球所标金额之和可获相应价格的礼品;乙商场的方案是:在一个不透明的箱子里放2个完全相同的小球,球上分别标“5元”“30元”,顾客每消费满100元,就可从箱子里有放回地摸出1个球,根据小球所标金额可获相应价格的礼品.某顾客准备消费300.

(1)请用画树状图或列表法,求出该顾客在甲商场获得礼品的总价值不低于50元的概率;

(2)判断该顾客去哪个商场消费使获得礼品的总价值不低于50元机会更大?并说明理由.

查看答案和解析>>

同步练习册答案