【题目】如图,已知,,平分,即,平分,即;
若,则________;
若可以在内部绕点作任意旋转(射线与射线不重合,射线与射线不重合)则的大小是否改变?试说明理由.
【答案】(1);(2)不改变.
【解析】
(2)由图形可知∠AOC=∠AOB-∠COD-∠BOD,由∠AOB=120°,∠COD=50°,∠BOD=30°,可得∠AOC的度数,再根据角平分线的定义可得∠2=∠BOD,∠3=∠AOC,再利用∠MON=∠COD+∠2+∠3,即可求得∠MON的度数;
(2)由题意知∠AOC+∠BOD=∠AOB-∠COD=120°-50°=70°,根据角平分线的定义可得∠2=∠BOD,∠3=∠AOC,所以∠2+∠3=(∠AOC+∠BOD)=35°,故可得∠MON=∠COD+∠2+∠3=50°+35°=85°,故∠MON的大小不会改变.
(1)∵∠AOB=120°,∠COD=50°,∠BOD=30°,
∴∠AOC=120°-50°-30°=40°,
∵OM平分∠BOD,即∠1=∠2,ON平分∠AOC,即∠3=∠4,
∴∠2=15°,∠3=20°,
∴∠MON=∠COD+∠2+∠3=50°+15°+20°=85°,
故答案为:85°;
(2)不改变,理由:
∵,,
∴,
∵平分,即,平分,即,
∴,,
∴,
∴,
故不改变.
科目:初中数学 来源: 题型:
【题目】已知x1是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根,记△=b2﹣4ac,M=(2ax1+b)2 , 则关于△与M大小关系的下列说法中,正确的是( )
A.△>M
B.△=M
C.△<M
D.无法确定△与M的大小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道1+2+3+…+=,则1+2+3+…+10= ___________ .
[问题提出] 那么 的结果等于多少呢?
[阅读理解] 在图1所示的三角形数阵中,第1行圆圈中的数为1,即12 ;第2行两个圆圈中数的和为2+2,即22;......;第n行n个圆圈中数的和为n+n+n即 n2;这样,该三角形数阵中共有____ 个圆圈,所有圆圈中数的和可表示为_________________ .
图1
[规律探究] 将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n-1行的第一个圆圈中的数分别为n-1,2,n)发现每个位置上三个圆圈中的数的和均为______________.由此可得,这三个三角形数阵所有圆圈中数的总和为:
3( )=_________________.因此, =__________.
图2
[问题解决]
(1).根据以上规律可得 __________________.
(2).试计算 ,请写出计算步骤.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)求出△ABC的面积;
(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;
(3)写出点A1,B1,C1的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=30 cm,BC=35 cm,∠B=60°,有一动点M自A向B以1 cm/s的速度运动,动点N自B向C以2 cm/s的速度运动,若M,N同时分别从A,B出发.
(1)经过多少秒,△BMN为等边三角形;
(2)经过多少秒,△BMN为直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)已知点A(4-a,-2a-3)和点B(-2,5),且AB∥x轴,试求点A的坐标;
(2)把点P(m+1,n-2m)先向右平移4个单位长度,再向下平移6个单位长度后得到点P′的坐标为(3,-2),试求m,n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两站相距240千米,从甲站开出一列慢车,速度为每小时80千米,从乙站开出一列快车,速度为每小时120千米.
(1)若两车同时开出,背向而行,则经过多长时间两车相距540千米?
(2)若两车同时开出,同向而行(快车在后),则经过多长时间快车可追上慢车?
(3)若两车同时开出,同向而行(慢车在后),则经过多长时间两车相距300千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在线段AB上取一点C(非中点),分别以AC、BC为边在AB的同侧作等边△ACD和等边△BCE,连接AE交CD于F,连接BD交CE于G,AE和BD交于点H,则下列结论:①AE=DB;②不另外添加线,图中全等三角形只有1对;③若连接FG,则△CFG是等边三角形;④若连接CH,则CH平分∠FHG.其中正确的是________(填序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两家商店出售同样牌子和规格的羽毛球拍和羽毛球,每副球拍定价300元,每盒羽毛球定价40元,为庆祝五一节,两家商店开展促销活动如下:
甲商店:所有商品9折优惠;
乙商店:每买1副球拍赠送1盒羽毛球。
某校羽毛球队需要购买副球拍和盒羽毛球.
(1)按上述的促销方式,该校羽毛球队在甲、乙两家商店各应花费多少元?试用含、的代数式表示;
(2)当时,试判断分别到甲、乙两家商店购买球拍和羽毛球,哪家便宜?
(3)当、满足什么关系时,到甲、乙两家商店购买球拍和羽毛球的费用相同?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com