【题目】请按要求完成下面三道小题(本题作图不要求尺规作图).
(1)如图1,AB=AC.这两条线段一定关于∠BAC的______所在直线对称,请画出该直线.
(2)如图2,已知线段AB和点C.求作线段CD,使它与AB成轴对称,且A与C是对称点,对称轴是线段AC的______.
(3)如图3,任意位置(不成轴对称)的两条线段AB,CD,AB=CD.你能从(1),(2)问中获得的启示,对其中一条线段作两次轴对称使它们重合吗?如果能,请画出图形并简要描述操作步骤;如果不能,请说明理由.
【答案】(1)角平分线,画图见解析;(2)垂直平分线,画图见解析;(3)能,画图见解析.
【解析】
(1)根据轴对称性质作∠BAC的角平分线即可;(2)连接AC,作AC的垂直平分线,即为对称轴,作B点关于对称轴的对称点D,连接CD即为所求;(3)连接BD,作BD的垂直平分线,即为对称轴,作点C关于对称轴的对称点E,连接BE,作∠ABE的角平分线即为对称轴,即可对其中一条线段作两次轴对称使它们重合.
(1)如图,作∠BAC的角平分线,即是∠BAC的对称轴,
故答案为:角平分线
(2)如图,连接AC,作AC的垂直平分线,即为对称轴,作B点关于对称轴的对称点D,连接CD即为所求.
故答案为:垂直平分线
(3)连接BD,作BD的垂直平分线,即为对称轴,作点C关于对称轴的对称点E,连接BE,作∠ABE的角平分线即为对称轴,
∴能对其中一条线段作两次轴对称使它们重合.
科目:初中数学 来源: 题型:
【题目】如图,已知AB为⊙O的直径,BD和CD为⊙O的切线,切点分别为B和C.
(1)求证:AC∥OD;
(2)当BC=BD,且BD=6cm时,求图中阴影部分的面积(结果不取近似值).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰三角形ABC底边BC的长为4,面积为12,腰AB的垂直平分线EF交AB于点E,交AC于点F.若D为BC边的中点,M为线段EF上一个动点,则△BDM的周长的最小值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在某市实施城中村改造的过程中,“旺鑫”拆迁工程队承包了一项10000 m2的拆迁工程.由于准备工作充分,实际拆迁效率比原计划提高了25%,提前2天完成了任务,请解答下列问题:
(1)求“旺鑫”拆迁工程队现在平均每天拆迁多少平方米;
(2)为了尽量减少拆迁给市民带来的不便,在拆迁工作进行了2天后,“旺鑫”拆迁工程队的领导决定加快拆迁工作,将余下的拆迁任务在5天内完成,那么“旺鑫”拆迁工程队平均每天至少再多拆迁多少平方米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】市教育局督导组为了调查学生对“节约教育”内容的了解程度(程度分:“了解很多”、“了解较多”、“了解较少”、“不了解”),对本市某所中学的学生进行了抽样调查,我们将这次调查的结果绘制了以下两幅不完整统计图.
根据以上信息,解答下列题.
(1)补全条形统计图.
(2)本次抽样调查了多少名学生?在扇形统计图中,求“”所应的圆心角的度数.
(3)该中学共有2000名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较少”的有多少人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(1,a)是反比例函数的图象上一点,直线与反比例函数的图象的交点为点B、D,且B(3,﹣1),求:
(1)求反比例函数的解析式;
(2)求点D坐标,并直接写出y1>y2时x的取值范围;
(3)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,点E、F在边AB、CD上,点G、H在边AD、CB上,EF和GH相交于点O,∠DGH=70°,按下列要求分别画出EF
(1)当∠GOE=90°时,求证:EF=GH;
(2)当EF=GH时,画出示意图,直接写出∠GOE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校有1500名学生,为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到下列图表(频数分布表中部分划记被墨水盖住):
某校100名学生上学方式频数分布表
方式 | 划记 | 频数 |
步行 | 正正正 | 15 |
骑车 | 正正正正正 | 29 |
乘公共交通工具 | 正正正正正正 | 30 |
乘私家车 | ||
其它 | ||
合计 | 100 |
(1)本次调查的个体是 .
(2)求频数分布表中,“乘私家车”部分对应的频数.
(3)请估计该校1500名学生中,选择骑车、乘公交和步行上学的一共有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com