精英家教网 > 初中数学 > 题目详情

【题目】曲线在直角坐标系中的位置如图所示,曲线是由半径为2,圆心角为是坐标原点,点轴上)绕点旋转,得到;再将绕点旋转,得到……依次类推,形成曲线,现有一点点出发,以每秒个单位长度的速度,沿曲线向右运动,则点的坐标为___________;在第时,点的坐标为____________

【答案】0 0

【解析】

如图,设的圆心为J,过点JJKOAK.解直角三角形求出OA的长,即可得到点A坐标,再求出点P的运动路径,判断出点P的位置,求出OP可得结论.

如图,设的圆心为J,过点JJKOAK

由题意JO=JA=2,∠AJO=120°,

JKOA

OK=KA,∠OJK=AJK=60°,

KO=KA=OJsin60°=

OA=2

A20),

的长=,点P的运动路径=2020π,

又∵2020π÷π=1515

∴点Px轴上,OP的长=1515×2=3030

∴此时P30300).

故答案为(20),(30300).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象分别交x轴、y轴于CD两点,交反比例函数图象于A4),B3m)两点.

(1)求直线CD的表达式;

(2)E是线段OD上一点,若,求E点的坐标;

(3)请你根据图象直接写出不等式的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场计划购进两种新型节能台灯共盏,这两种台灯的进价、售价如表所示:

)若商场预计进货款为元,则这两种台灯各购进多少盏?

)若商场规定型台灯的进货数量不超过型台灯数量的倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,对角线互相垂直的四边形叫做垂美四边形.

(1)概念理解:如图2,在四边形中,,问四边形是垂美四边形吗?请说明理由;

(2)性质探究:如图1,四边形的对角线交于点.

试证明:

(3)解决问题:如图3,分别以的直角边和斜边为边向外作正方形和正方形,连结.已知,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着生活节奏的加快以及智能手机的普及,外卖点餐逐渐成为越来越多用户的餐饮消费习惯.由此催生了一批外卖点餐平台,已知某外卖平台的送餐费用与送餐距离有关(该平台只给5千米范围内配送),为调査送餐员的送餐收入,现从该平台随机抽取80名点外卖的用户进行统计,按送餐距离分类统计结果如下表:

送餐距离x(千米)

0x1

1x2

2x3

3x4

4x5

数量

12

20

24

16

8

1)从这80名点外卖的用户中任取一名用户,该用户的送餐距离不超过3千米的概率为

2)以这80名用户送餐距离为样本,同一组数据取该小组数据的中间值(例如第二小组(1x 2)的中间值是1.5),试估计利用该平台点外卖用户的平均送餐距离;

3)若该外卖平台给送餐员的送餐费用与送餐距离有关,不超过2千米时,每份3元;超过2千米但不超4千米时,每份5元;超过4千米时,每份9元. 以给这80名用户所需送餐费用的平均数为依据,若送餐员一天的目标收入不低于150元,试估计一天至少要送多少份外卖?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°AB=10BC=6,点O在射线上(点不与点重合),过点,垂足为,以点为圆心,为半径画半圆,分别交射线两点,设

1)如图,当点边的中点时,求的值;

2)如图,当点与点重合时,连接,求弦的长;

3)当半圆无交点时,直接写出的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:

在综合与实践课上,老师让同学们以矩形纸片的剪拼为主题开展数学活动.如图1,将矩形纸片沿对角线剪开,得到.并且量得.

操作发现:

(1)将图1中的以点为旋转中心,按逆时针方向旋转,使,得到如图2所示的,过点的平行线,与的延长线交于点,则四边形的形状是________.

(2)创新小组将图1中的以点为旋转中心,按逆时针方向旋转,使三点在同一条直线上,得到如图3所示的,连接,取的中点,连接并延长至点,使,连接,得到四边形,发现它是正方形,请你证明这个结论.

实践探究:

(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将沿着方向平移,使点与点重合,此时点平移至点,相交于点,如图4所示,连接,试求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】陈先生驾车从杭州到上海,要经过一段高速公路,假设汽车在高速公路上匀速行驶,记行驶时间为t小时,速度为v千米/小时,如果陈先生驾车速度为90千米/小时,2小时可以通过高速公路.

1)求vt的函数表达式.

2)高速公路的速度限定为不超过120千米/小时,陈先生计划10:00驶入高速,11:48前驾驶离开高速公路,求它的驾车速度v的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD的顶点都在坐标轴上,若AB∥CDAOBCOD面积分别为818,若双曲线y恰好经过BC的中点E,则k的值为_____

查看答案和解析>>

同步练习册答案