精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,点A、B的坐标分别是(0,3)、(﹣4,0),

(1)将△AOB绕点A逆时针旋转90°得到△AEF,点O,B对应点分别是E,F,请在图中画出△AEF,并写出E、F的坐标;

(2)以O点为位似中心,将△AEF作位似变换且缩小为原来的,在网格内画出一个符合条件的△A1E1F1

【答案】(1)E(3,3),F(3,0);(2)见解析.

【解析】分析:(1)利用网格特点和旋转的性质,画出点O,B对应点E,F,从而得到△AEF,然后写出E、F的坐标;

(2)分别连接OE、OF,然后分别去OA、OE、OF的三等份点得到A1、E1、F1,从而得到△A1E1F1

详解:(1)如图,△AEF为所作,E(3,3),F(3,0);

(2)如图,△A1E1F1为所作.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:

(1)求这次调查的家长人数,并补全图1;

(2)求图2中表示家长“赞成”的圆心角的度数;

(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx3A10),B(﹣30),直线AD交抛物线于点D,点D的横坐标为﹣2,点Pmn)是线段AD上的动点.

1)求直线AD及抛物线的解析式;

2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度lm的关系式,m为何值时,PQ最长?

3)在平面内是否存在整点(横、纵坐标都为整数)R,使得PQDR为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】振华书店准备购进甲、乙两种图书进行销售,若购进本甲种图书和本乙种图书共需元,若购进本甲种图书和本乙种图书共需.

求甲、乙两种图书每本进价各多少元;

该书店购进甲、乙两种图书共本进行销售,且每本甲种图书的售价为元,每本乙种图书的售价为元,如果使本次购进图书全部售出后所得利润不低于元,那么该书店至少需要购进乙种图书多少本?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?

小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.

下面是小林的探究过程,请补充完整:

1)画出几何图形,明确条件和探究对象;

如图2,在RtABC中,∠C=90°AC=BC=6cmD是线段AB上一动点,射线DEBC于点E,∠EDF=60°,射线DF与射线AC交于点F.设BE两点间的距离为xcmEF两点间的距离为ycm

2)通过取点、画图、测量,得到了xy的几组值,如下表:

x/cm

0

1

2

3

4

5

6

y/cm

6.9

5.3

4.0

3.3

4.5

6

(说明:补全表格时相关数据保留一位小数)

3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;

4)结合画出的函数图象,解决问题:当DEF为等边三角形时,BE的长度约为 cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠A=30°,∠C=90°,AB=12,四边形EFPQ是矩形,点P与点C重合,点QEF分别在BCABAC上(点E与点A、点B均不重合).

(1)当AE=8时,求EF的长;

(2)设AEx,矩形EFPQ的面积为y

yx的函数关系式;

x为何值时,y有最大值,最大值是多少?

(3)当矩形EFPQ的面积最大时,将矩形EFPQ以每秒1个单位的速度沿射线CB匀速向右运动(当点P到达点B时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求St的函数关系式,并写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图:

请你根据统计图回答下列问题:

(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图;

(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?

(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?

(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使ABAC,连接AC,过点DDEAC,垂足为 E

1)求证:DCBD

2)求证:DE为⊙O的切线;

3)若AB12AD6,连接OD,求扇形BOD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点AB在半径为3的⊙O上,以OAAB为邻边作平行四边形OCBA,作点B关于OA的对称点D,连接CD,则CD的最大值为________.

查看答案和解析>>

同步练习册答案