分析 (1)根据圆周角定理求出∠ABC=60°,∠ACB=90°,根据三角形内角和定理求出即可;
(2)连接OC,得出等边三角形BOC,求出OC=4,∠BOC=60°,求出∠AOC,根据弧长公式求出即可.
解答 解:(1)∵∠ABC与∠D都是弧AC所对的圆周角,
∴∠ABC=∠D=60°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠BAC=180°-90°-60°=30°;
(2)连结OC,![]()
∵OB=OC,∠ABC=60°∴△OBC是等边三角形
∴OC=BC=4,∠BOC=60°,
∴∠AOC=120°,
∴劣弧AC的长为$\frac{120π×4}{180}$=$\frac{8}{3}$π.
点评 本题考查了圆周角定理和弧长公式的应用,能求出OC的长和∠AOC的度数是解此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com