【题目】已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.
(1)求这条抛物线的表达式和点B的坐标;
(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;
(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.
【答案】(1)抛物线的解析式为y=﹣x2+2x+2.顶点B坐标为(1,3).
(2)cot∠AMB=m﹣2.
(3)点Q的坐标为(,﹣)或(,﹣).
【解析】
试题分析:(1)依据抛物线的对称轴方程可求得b的值,然后将点A的坐标代入y=﹣x2+2x+c可求得c的值;
(2)过点A作AC⊥BM,垂足为C,从而可得到AC=1,MC=m﹣2,最后利用锐角三角函数的定义求解即可;
(3)由平移后抛物线的顶点在x轴上可求得平移的方向和距离,故此QP=3,然后由点QO=PO,QP∥y轴可得到点Q和P关于x对称,可求得点Q的纵坐标,将点Q的纵坐标代入平移后的解析式可求得对应的x的值,则可得到点Q的坐标.
试题解析:(1)∵抛物线的对称轴为x=1,∴x=﹣=1,即 =1,解得b=2.
∴y=﹣x2+2x+c.
将A(2,2)代入得:﹣4+4+c=2,解得:c=2.
∴抛物线的解析式为y=﹣x2+2x+2.
配方得:y=﹣(x﹣1)2+3.∴抛物线的顶点坐标为(1,3).
(2)如图所示:过点A作AC⊥BM,垂足为C,则AC=1,C(1,2).
∵M(1,m),C(1,2),∴MC=m﹣2.∴cot∠AMB==m﹣2.
(3)∵抛物线的顶点坐标为(1,3),平移后抛物线的顶点坐标在x轴上,
∴抛物线向下平移了3个单位.
∴平移后抛物线的解析式为y=﹣x2+2x﹣1,PQ=3.
∵OP=OQ,∴点O在PQ的垂直平分线上.
又∵QP∥y轴,∴点Q与点P关于x轴对称.
∴点Q的纵坐标为﹣ .
将y=﹣代入y=﹣x2+2x﹣1得:﹣x2+2x﹣1=﹣,解得:x= 或x=.
∴点Q的坐标为(,﹣)或(,﹣).
科目:初中数学 来源: 题型:
【题目】图1,图2,图3是三张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,两点都在格点上,连结,请完成下列作图:
(1)以为对角线在图1中作一个正方形,且正方形各顶点均在格点上.
(2)以为对角线在图2中作一个矩形,使得矩形面积为6,且矩形各顶点均在格点上.
(3)以为对角线在图3中作一个面积最小的平行四边形,且平行四边形各顶点均在格点上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,点E,点F为对角线BD的三等分点,过点E,点F与BD垂直的直线分别交AB,BC,AD,DC于点M,N,P,Q,MF与PE交于点R,NF与EQ交于点S,已知四边形RESF的面积为5cm2,则菱形ABCD的面积是( )
A. 35cm2B. 40cm2C. 45cm2D. 50cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD平分∠BAC交BC于点D,DE⊥AB于点E,DF⊥AC于点F,∠MDN的两边分别与AB,AC相交于M,N两点,且∠MDN+∠BAC=180°.
(1)求证AE=AF;
(2)若AD=6,DF=2,求四边形AMDN的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知a、b、c三个数在数轴上对应点的位置如图所示,下列几个判断:①a<c<b;②-a<b;③a+b>0;④c-a<0;⑤a+c>0;⑥;正确的个数有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,巨型广告牌AB背后有一看台CD,台阶每层高0.3米,且AC=17米,现有一只小狗睡在台阶的FG这,层上晒太阳,设太阳光线与水平地面的夹角为α,当α=60°时,测得广告牌AB在地面上的影长AE=10米,过了一会,当α=45°,问小狗在FG这层是否还能晒到太阳?请说明理由(取1.73).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在梯形ABCD中,AD∥BC,∠A=90°,AD=2,AB=4,BC=5,在射线BC任取一点M,联结DM,作∠MDN=∠BDC,∠MDN的另一边DN交直线BC于点N(点N在点M的左侧).
(1)当BM的长为10时,求证:BD⊥DM;
(2)如图(1),当点N在线段BC上时,设BN=x,BM=y,求y关于x的函数关系式,并写出它的定义域;
(3)如果△DMN是等腰三角形,求BN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,PQ两点同时运动,相遇时停止.在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR.设运动时间为t秒.
(1)当t= 时,△PQR的边QR经过点B;
(2)设△PQR和矩形OABC重叠部分的面积为S,求S关于t的函数关系式;
(3)如图2,过定点E(5,0)作EF⊥BC,垂足为F,当△PQR的顶点R落在矩形OABC的内部时,过点R作x轴、y轴的平行线,分别交EF、BC于点M、N,若∠MAN=45°,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】无锡阳山水蜜桃上市后,甲、乙两超市分别用60000元以相同的进价购进相同箱数的水蜜桃,甲超市销售方案是:将水蜜桃按分类包装销售,其中挑出优质大个的水蜜桃400箱,以进价的2倍价格销售,剩下的水蜜桃以高于进价10%销售.乙超市的销售方案是:不将水蜜桃分类,直接销售,价格按甲超市分类销售的两种水蜜桃售价的平均数定价.若两超市将水蜜桃全部售完,其中甲超市获利42000元(其它成本不计).问:
(1)水蜜桃进价为每箱多少元?
(2)乙超市获利多少元?哪种销售方式更合算?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com