【题目】科技驱动新零售商业变革的时代已经来临,无人超市的经营模式已在全国各地兴起,某家无人超市开业以来,经测算,为销售A型商品每天需固定支出的费用为400元,若A型商品每件的销售利润不超过9元,每天销售A型商品的数量为280件,若A型商品每件的销售利润超过9元,则每超过1元,每天销售A型商品的数量减少10件,设该家无人超市A型商品的销售利润为x元/件,A型商品的日净收入为y元(日净收入=A型商品每天销售的总利润﹣A型商品每天固定的支出费用):
(1)试求出该超市A型商品的日净收入为y(元)与A型商品的销售利润x(元/件)之间的关系式;
(2)该超市能否实现A型商品的销售日净收入3000元的目的?如能实现,求出A型商品的销售利润为多少元/件?如不能实现,请说明理由;
(3)请问该超市A型商品的销售利润为多少元/件时,能获得A型商品的最大日净收入?
【答案】(1);(2)该超市能实现A型商品的销售日净收入3000元的目的,A型商品的销售利润为17元/件或20元/件;(3)该超市A型商品的销售利润为18元/件或19元/件时,能获得A型商品的最大日净收入.
【解析】
(1)根据题意可以列出相应的函数解析式;
(2)根据(1)中的函数解析式即可解答本题;
(3)根据(1)中的函数解析式即可求得y的最大值.
解:(1)由题意可得,
当0<x≤9时,y=280x﹣400,
当x>9时,y=[280﹣(x﹣9)×10]x﹣400=﹣10x2+370x﹣400,
由上可得,该超市A型商品的日净收入为y(元)与A型商品的销售利润x(元/件)之间的关系式是:y=;
(2)∵当0<x≤9时,y=280x﹣400≤2120,
∴令y=3000代入y=﹣10x2+370x﹣400,
解得,x1=17,x2=20,
答:该超市能实现A型商品的销售日净收入3000元的目的,A型商品的销售利润为17元/件或20元/件;
(3)∵当0<x≤9时,y=280x﹣400≤2120,
当x>9时,y=﹣10x2+370x﹣400=﹣10(x﹣)2+3022.5,
∵x>9且x为整数,
∴当x=18或19时,y取得最大值,此时y=3020,
答:该超市A型商品的销售利润为18元/件或19元/件时,能获得A型商品的最大日净收入.
科目:初中数学 来源: 题型:
【题目】已知,PA、PB是⊙O的切线,切点分别为A、B,AC是⊙O的直径.
(1)如图1,若∠BAC=25°,求∠P的度数;
(2)如图2,延长PB、AC相交于点D.若AP=AC,求cosD的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计图如下(未完成),解答下列问题:
(1)若A组的频数比B组小24,求频数分布直方图中的、的值;
(2)扇形统计图中,D部分所对的圆心角为n°,求n的值并补全频数分布直方图;
(3)若成绩在80分以上为优秀,全校共有2000名学生,估计成绩优异的学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
种类 | A | B | C | D | E | F |
上学方式 | 电动车 | 私家车 | 公共交通 | 自行车 | 步行 | 其他 |
某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图
根据以上信息,回答下列问题:
(1)参与本次问卷调查的学生共有____人,其中选择B类的人数有____人.
(2)在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.
(3)若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点E为正方形ABCD的边CD上一点,DF⊥AE于点F,交AC于点M,交BC于点G,在CD上取一点G′,使CG′=CG.连接MG′.
(1)求证:∠AED=∠CG′M;
(2)如图2,连接BD交AE于点N,连接MN,MG′交AE于H.
①试判断MN与CD的位置关系,并说明理由;
②若AB=12,DG′=G′E,求AH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,M为等腰三角形ABD的底边AB的中点,过D作DC∥AB,连接BC,AB=6cm,DM=3cm,DC=3-cm.动点P自A点出发,在AB上匀速运动,动点Q自点B出发,在折线BC-CD上匀速运动,速度均为1cm/s,两点同时出发,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(s)时,△MPQ的面积为S.
(1)当点P在线段AM上运动时,PM=_______.(用t的代数式表示)
(2)求BC的长度;
(3)当点P在MB上运动时,求S与t之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.
(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?
(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1.若四边形AC1A1C为矩形,则a,b应满足的关系式为( )
A. ab=﹣2 B. ab=﹣3 C. ab=﹣4 D. ab=﹣5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com