【题目】如图所示,M为等腰三角形ABD的底边AB的中点,过D作DC∥AB,连接BC,AB=6cm,DM=3cm,DC=3-cm.动点P自A点出发,在AB上匀速运动,动点Q自点B出发,在折线BC-CD上匀速运动,速度均为1cm/s,两点同时出发,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(s)时,△MPQ的面积为S.
(1)当点P在线段AM上运动时,PM=_______.(用t的代数式表示)
(2)求BC的长度;
(3)当点P在MB上运动时,求S与t之间的函数关系式.
【答案】(1)PM=3-t;(2)2 ;(3)当3<t≤2时,S=;当2<t≤3+时,S=
【解析】
(1)如图1中,根据PM=AM-AP计算即可.
(2)过点C作CE⊥AB,垂足为E,如图2,求出EC,BE即可.
(3)分两种情形:①当时,点P在线段BM上,点Q在线段BC上,过点Q作QF⊥AB,垂足为F,如图3.②当 时,点P在线段BM上,点Q在线段DC上,过点Q作QF⊥AB,垂足为F,如图4,分别求解即可.
(1)如图中,
PM=3-t.
(2)过点C作CE⊥AB,垂足为E,如图1,
∵DA=DB,AM=BM,
∴DM⊥AB.
∵CE⊥AB,
∴∠CEB=∠DMB=90°.
∴CE∥DM.
∵DC∥ME,CE∥DM,∠DME=90°,
∴四边形DCEM是矩形.
∴CE=DM=3,.
∵AM=BM,AB=6,
∴AM=BM=3.
∴.
∵∠CEB=90°,CE=3,,
∴ .
(3)①当时,点P在线段BM上,点Q在线段BC上,
过点Q作QF⊥AB,垂足为F,如图2,
∵QF⊥AB,CE⊥AB,
∴∠QFB=∠CEB=90°.
∴QF∥CE.
∴
∴
∵BQ=t,
∴,
∵,
∴
②当2<t≤3+时,点P在线段BM上,点Q在线段DC上,
过点Q作QF⊥AB,垂足为F,如图3,
此时QF=DM=3.
∵PM=AP﹣AM=t﹣3,
∴
=.
综上所述:当3<t≤2时,S=;当2<t≤3+时,S=
.
科目:初中数学 来源: 题型:
【题目】如图,某无人机于空中处探测到目标的俯角分别是,此时无人机的飞行高度为,随后无人机从处继续水平飞行m到达处.
(1)求之间的距离
(2)求从无人机上看目标的俯角的正切值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学课上,大家一起研究三角形中位线定理的证明,小丽和小亮在学习思考后各自尝试了一种辅助线,如图1,图2所示,其中辅助线做法能够用来证明三角形中位线定理的是( )
A. 小丽和小亮的辅助线做法都可以
B. 小丽和小亮的辅助线做法都不可以
C. 小丽的辅助线做法可以,小亮的不可以
D. 小亮的辅助线做法可以,小丽的不可以
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】科技驱动新零售商业变革的时代已经来临,无人超市的经营模式已在全国各地兴起,某家无人超市开业以来,经测算,为销售A型商品每天需固定支出的费用为400元,若A型商品每件的销售利润不超过9元,每天销售A型商品的数量为280件,若A型商品每件的销售利润超过9元,则每超过1元,每天销售A型商品的数量减少10件,设该家无人超市A型商品的销售利润为x元/件,A型商品的日净收入为y元(日净收入=A型商品每天销售的总利润﹣A型商品每天固定的支出费用):
(1)试求出该超市A型商品的日净收入为y(元)与A型商品的销售利润x(元/件)之间的关系式;
(2)该超市能否实现A型商品的销售日净收入3000元的目的?如能实现,求出A型商品的销售利润为多少元/件?如不能实现,请说明理由;
(3)请问该超市A型商品的销售利润为多少元/件时,能获得A型商品的最大日净收入?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正三角形ABC的边长为3+,在三角形中放入正方形DEMN和正方形EFPH,使得D、E、F在边AB上,点P、N分别在边CB、CA上,设两个正方形的边长分别为m,n,则这两个正方形的面积和的最小值为( )
A. B. C. 3D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E在△DBC边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论,其中正确的是_____(填序号)①BD⊥CE②∠DCB﹣∠ABD=45°③CE﹣BE=AD④BE2+CD2=2(AD2+AB2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系xOy中的和点P,给出如下定义:如果在上存在一个动点Q,使得是以CQ为底的等腰三角形,且满足底角,那么就称点P为的“关联点”.
当的半径为2时,
在点,,中,的“关联点”是______;
如果点P在射线上,且P是的“关联点”,求点P的横坐标m的取值范围.
的圆心C在x轴上,半径为4,直线与两坐标轴交于A和B,如果线段AB上的点都是的“关联点”,直接写出圆心C的横坐标n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=-1,且过点(-3,0),说法:① abc<0;② 2a-b=0;③ 4a-2b+c<0;④ 若(-5,y1)、(,y2)是抛物线上两点,则y1>y2,其中说法正确的有( )个
A. 1B. 2C. 3D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com