【题目】如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=-1,且过点(-3,0),说法:① abc<0;② 2a-b=0;③ 4a-2b+c<0;④ 若(-5,y1)、(,y2)是抛物线上两点,则y1>y2,其中说法正确的有( )个
A. 1B. 2C. 3D. 4
【答案】D
【解析】
根据抛物线开口方向得到a>0,根据抛物线的对称轴得b=2a>0,则2a-b=0,则可对②进行判断;根据抛物线与y轴的交点在x轴下方得到c<0,则abc<0,于是可对①进行判断;由于x=-2时,y<0,则得到4a-2b+c<0,则可对③进行判断;通过点(-5,y1)和点(1,y2)离对称轴要远近对④进行判断.
∵抛物线开口向上,
∴a>0,
∵抛物线对称轴为直线x= =1,
∴b=2a>0,则2ab=0,所以②正确;
∵抛物线与y轴的交点在x轴下方,
∴c<0,
∴abc<0,所以①正确;
∵x=2时,y<0,
∴4a2b+c<0,所以③正确;
∵点(5,y1)离对称轴要比点(1, y2)离对称轴要远,
∴y1>y2,所以④正确.
故选D.
科目:初中数学 来源: 题型:
【题目】已知,PA、PB是⊙O的切线,切点分别为A、B,AC是⊙O的直径.
(1)如图1,若∠BAC=25°,求∠P的度数;
(2)如图2,延长PB、AC相交于点D.若AP=AC,求cosD的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,M为等腰三角形ABD的底边AB的中点,过D作DC∥AB,连接BC,AB=6cm,DM=3cm,DC=3-cm.动点P自A点出发,在AB上匀速运动,动点Q自点B出发,在折线BC-CD上匀速运动,速度均为1cm/s,两点同时出发,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(s)时,△MPQ的面积为S.
(1)当点P在线段AM上运动时,PM=_______.(用t的代数式表示)
(2)求BC的长度;
(3)当点P在MB上运动时,求S与t之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.
(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?
(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】区教育局为了解本区八年级学生参加社会实践活动情况,随机抽查了区内部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据检测了两幅统计图,下面给出了两幅不完整的统计图(如图)请根据图中提供的信息,回答下列问题:
(1)a=_____,请补全条形图;
(2)求出在这次抽样调查样本数据中,众数和中位数;
(3)如果该区共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2-4ax+b交x轴正半轴于A、B两点,交y轴正半轴于C,且OB=OC=3.
(1) 求抛物线的解析式;
(2) 如图1,D为抛物线的顶点,P为对称轴左侧抛物线上一点,连接OP交直线BC于G,连GD.是否存在点P,使?若存在,求点P的坐标;若不存在,请说明理由;
(3) 如图2,将抛物线向上平移m个单位,交BC于点M、N.若∠MON=45°,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1.若四边形AC1A1C为矩形,则a,b应满足的关系式为( )
A. ab=﹣2 B. ab=﹣3 C. ab=﹣4 D. ab=﹣5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小飞研究二次函数y=-(x-m)2-m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=-x+1上;②存在一个m的值,使得函数图象的顶点与轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当-1<x<2时,y随x的增大而增大,则m的取值范围为m≥2其中错误结论的序号是( )
A. ①B. ②C. ③D. ④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com