精英家教网 > 初中数学 > 题目详情

【题目】如图,将边长为6的正方形沿其对角线剪开,再把沿着方向平移,得到,当两个三角形重叠部分的面积为5时,则______.

【答案】15

【解析】

AA′=xACA′B′相交于点E,判断出AA′E是等腰直角三角形,根据等腰直角三角形的性质可得A′E=x,再表示出A′D,然后根据平行四边形的面积公式列方程求解即可.

AA′=xACA′B′相交于点E
∵△ACD是正方形ABCD剪开得到的,
∴△ACD是等腰直角三角形,
∴∠A=45°
∴△AA′E是等腰直角三角形,
A′E=AA′=x
A′D=AD-AA′=6-x
∵两个三角形重叠部分的面积为5
x6-x=5
整理得,x2-6x+5=0
解得x1=1x2=5
即移动的距离AA′等于15
故答案是:15

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,DE分别是ABAC边上的点,点FBC的延长线上,DEBC,若∠A48°,∠154°,则下列正确的是(  )

A. 248°B. 254°C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与轴交于点,对称轴为直线,下列结论:①;②9a+3b+c=0;③若点,点是此函数图象上的两点,则;④.其中正确的个数(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A、B两点,点A在点B左侧,点B的坐标为(1,0),C(0,-3)

(1) 求抛物线的解析式

(2) 若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.

(3) 若点Ex轴上,点P在抛物线上,是否存在以ACEP为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线最高点D到墙面OB的水平距离为6m时,隧道最高点D距离地面10m.

(1)求该抛物线的函数关系式;

(2)一辆货运汽车载一长方体集装箱后宽为4m,高为6m,如果隧道内设双向行车道,那么这辆货车能否安全通过?

(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角三角形中,,在边上取一点,使得,点分别是线段的中点,连接,作,交于点,如图1所示.

1)请判断四边形是什么特殊的四边形,并证明你的结论;

2)将绕点顺时针旋转到,交线段于点,交于点,如图2所示,请证明:

3)在第(2)条件下,若点中点,且,如图3,求的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某无人机于空中处探测到目标的俯角分别是,此时无人机的飞行高度,随后无人机从处继续水平飞行m到达处.

1之间的距离

2求从无人机上看目标的俯角的正切值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点FDE的延长线上,∠BFE=90°,连接AF、CF,CFAB交于G.有以下结论:

①AE=BC

②AF=CF

③BF2=FGFC

④EGAE=BGAB

其中正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】科技驱动新零售商业变革的时代已经来临,无人超市的经营模式已在全国各地兴起,某家无人超市开业以来,经测算,为销售A型商品每天需固定支出的费用为400元,若A型商品每件的销售利润不超过9元,每天销售A型商品的数量为280件,若A型商品每件的销售利润超过9元,则每超过1元,每天销售A型商品的数量减少10件,设该家无人超市A型商品的销售利润为x元/件,A型商品的日净收入为y元(日净收入=A型商品每天销售的总利润﹣A型商品每天固定的支出费用):

1)试求出该超市A型商品的日净收入为y(元)与A型商品的销售利润x(元/件)之间的关系式;

2)该超市能否实现A型商品的销售日净收入3000元的目的?如能实现,求出A型商品的销售利润为多少元/件?如不能实现,请说明理由;

3)请问该超市A型商品的销售利润为多少元/件时,能获得A型商品的最大日净收入?

查看答案和解析>>

同步练习册答案