【题目】如图,在△ABC中,D、E分别是AB、AC边上的点,点F在BC的延长线上,DE∥BC,若∠A=48°,∠1=54°,则下列正确的是( )
A. ∠2=48°B. ∠2=54°C. D.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A(1,0),B(3,0),与y轴交于C(0,3),抛物线顶点为D点.
(1)求此抛物线解析式;
(2)如图1,点P为抛物线上的一个动点,且在对称轴右侧,若△ADP面积为3,求点P的坐标;
(3)在(2)的条件下,PA交对称轴于点E,如图2,过E点的任一条直线与抛物线交于M,N两点,直线MD交直线y=﹣3于点F,连结NF,求证:NF∥y轴.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:一元二次方程(k-1)x2-2kx+k+2=0有两个不相等的实数根.
(1)求k的取值范围;
(2)设x1,x2是方程的两个不相等的实数根,且满足(k-1)x12+2kx2+k+2=4x1x2.求k的值;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知x1,x2 是关于x的方程(x-2)(x-m)=(p-2)(p-m)的两个实数根.
(1)求x1,x2 的值;
(2)若x1,x2 是某直角三角形的两直角边的长,问当实数m,p满足什么条件时,此直角三角形的面积最大?并求出其最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某中学学生对“厉行勤俭节约,反对铺张浪费”主题活动的参与情况,小强在全校范围内随机抽取了若干名学生并就某日午饭浪费饭菜情况进行了调查,将调查内容分为四组:饭和菜全部吃完;:有剩饭但菜吃完;:饭吃完但菜有剩;:饭和菜都有剩.根据调查结果,绘制了如图所示两幅不完整的统计图.
回答下列问题:
(1)这次被抽查的学生共有 人,扇形统计图中,“组”所对应的圆心角的度数为 ;
(2)补全条形统计图;
(3)已知该中学共有学生人,请估计这日午饭有剩饭的学生人数,若按平均每人剩克米饭计算,这日午饭将浪费多少千克米饭?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=AC
(1)求过点A,B的直线的函数表达式;
(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;
(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】使得函数值为零的自变量的值称为函数的零点。例如,对于函数,令y=0,可得x=1,我们就说1是函数的零点。
己知函数(m为常数)。
(1)当=0时,求该函数的零点;
(2)证明:无论取何值,该函数总有两个零点;
(3)设函数的两个零点分别为和,且,此时函数图象与x轴的交点分
别为A、B(点A在点B左侧),点M在直线上,当MA+MB最小时,求直线AM的函数解析式。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE;
(1)试判断四边形BECF是什么四边形?并说明理由.
(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com