精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,矩形纸片OABC的顶点AC分别在x轴,y轴的正半轴上,将纸片沿过点C的直线翻折,使点B恰好落在x轴上的点B处,折痕交AB于点D.若OC=9,则折痕CD所在直线的解析式为____

【答案】y=x+9.

【解析】

根据OC=9先求出BC的长,继而根据折叠的性质以及勾股定理的性质求出OB′的长,求得AB′的长,设AD=m,则B′D=BD=9-m,在Rt△AB′D中利用勾股定理求出x的长,进而求得点D的坐标,再利用待定系数法进行求解即可.

OC=9

BC=15

∵四边形OABC是矩形,

AB=OC=9OA=BC=15∠COA=∠OAB=90°

∴C(09)

折叠,

B′C=BC=15B′D=BD

Rt△COB′中,OB′==12

∴AB′=15-12=3

AD=m,则B′D=BD=9-m

Rt△AB′D中,AD2+B′A2=B′D2

m2+32=(9-m)2

解得m=4

D(154)

CD所在直线解析式为y=kx+b

CD两点坐标分别代入得:

解得:

CD所在直线解析式为y=x+9

故答案为:y=x+9.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是按照一定规律画出的树形图,经观察可以发现:图A2比图A1多出2树枝,图A3比图A2多出4树枝,图A4比图A3多出8树枝”……照此规律,图A6比图A2多出树枝”( )

A.32B.56C.60D.64

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+2x的顶点为M,与x轴交于0A两点,点Pa0)是线段0A上一动点(不包括端点),过点Py轴的平行线,交直线y=x于点B,交抛物线于点C,以BC为一边,在BC的右侧作矩形BCDE,若CD=2,则当矩形BCDEOAM重叠部分为轴对称图形时,a的取值范围是__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应“书香校园”号召,重庆一中在九年级学生中随机抽取某班学生对2016年全年阅读中外名著的情况进行调查,整理调查结果发现,每名学生阅读中外名著的本数,最少的有5本,最多的有8本,并根据调查结果绘制了如图所示的不完整的折线统计图和扇形统计图.

(1)该班学生共有 名,扇形统计图中阅读中外名著本数为7本所对应的扇形圆心角的度数是 度,并补全折线统计图;

(2)根据调查情况,班主任决定在阅读中外名著本数为5本和8本的学生中任选两名学生进行交流,请用树状图或表格求出这两名学生阅读的本数均为8本的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+x+3x轴交于A,B两点(点A在点B左侧),与y轴交于点C,连接BC,过点AADBCy轴于点D.

(1)求平行线AD、BC之间的距离;

(2)如图1,点P为线段BC上方抛物线上的一动点,当△PCB的面积最大时,Q从点P出发,先沿适当的路径运动到直线BC上点M处,再沿垂直于直线BC的方向运动到直线AD上的点N处,最后沿适当的路径运动到点B处停止.当点Q的运动路径最短时,求点M的坐标及点Q经过的最短路径的长;

(3)如图2,将抛物线以每秒个单位长度的速度沿射线AD方向平移,抛物线上的点A、C平移后的对应点分别记作A′、C′,当△A′C′B是以C′B为底边的等腰三角形时,将等腰△A′C′B绕点D逆时针旋转一周,记旋转中的△A′C′B为△A″C″B′,若直线A″C″y轴交于点K,直线A″C″与直线AD交于点I,当△DKI是以KI为底边的等腰三角形时,求出DK2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:abc满足a=-b,|a+1|+c-42=0,请回答问题:

1)请求出abc的值;

2abc所对应的点分别为ABCP为数轴上一动点,其对应的数为x,若点P在线段BC上时,请化简式子:|x+1|-|1-x|+2|x-4|(请写出化简过程);

3)若点PA点出发,以每秒2个单位长度的速度向右运动,试探究当点P运动多少秒时,PC=3PB?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形都是由相同的小正方形按照一定规律摆放而成,其中第1个图共有3个小正方形,第2个图共有8个小正方形,第3个图共有15个小正方形,第4个图共有24个小正方形,,照此规律排列下去,则第8个图中小正方形的个数是(  )

A. 48B. 63C. 80D. 99

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l1的解析式为y=﹣x+2,l1x轴交于点B,直线l2经过点D(0,5),与直线l1交于点C(﹣1,m),且与x轴交于点A,

(1)求点C的坐标及直线l2的解析式;

(2)求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,为坐标原点,点(0,1),点(1,0),正方形的两条对角线的交点为,延长至点,使.延长至点,使,以为邻边做正方形

(Ⅰ)如图①,求的长及的值;

(Ⅱ)如图②,正方形固定,将正方形绕点逆时针旋转,得正方形,记旋转角为(0°<<360°),连接

旋转过程中,当90°时,求的大小;

②在旋转过程中,求的长取最大值时,点的坐标及此时的大小(直接写出结果即可)

查看答案和解析>>

同步练习册答案