【题目】下列说法正确的是( )
A.小明所在的篮球队每月只参加一场比赛,共参加13场,则他参加的比赛中至少有两场比赛的举办月份相同
B.一次抽奖活动的中奖率是,那么抽100次必然会中一次奖
C.2019年11月29日是晴天,是必然事件
D.张老师从一个由2名男生和3名女生组成的小组中随机叫一名学生,叫到男生的可能性大于叫到女生的可能性
【答案】A
【解析】
根据:必然事件指在一定条件下一定发生的事件,即可对A、B、C作出判断;根据数量的多少直接判断可能性的大小对D作出判断.
A. 小明所在的篮球队每月只参加一场比赛,共参加13场,则他参加的比赛中至少有两场比赛的举办月份相同,是必然事件,故本选项正确;
B.这次抽奖活动的中奖率是,买100张这样的奖券,有可能中奖一次,但属于不确定事件中的可能性事件;所以本题中说买100张,一定会中奖,说法错误.
C. 2019年11月29日是晴天,是随机事件,故本选项错误;
D. 张老师从一个由2名男生和3名女生组成的小组中随机叫一名学生,因为,所以叫到男生的可能性小于叫到女生的可能性.
科目:初中数学 来源: 题型:
【题目】某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量(袋与销售单价(元之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5.另外每天还需支付其他各项费用80元.
销售单价(元 | 3.5 | 5.5 |
销售量(袋 | 280 | 120 |
(1)请求出与之间的函数关系式;
(2)设每天的利润为元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在二次函数y=-x2+bx+c中,函数y与自变量x的部分对应值如下表:
x | …… | -2 | 0 | 3 | 4 | …… |
y | …… | -7 | m | n | -7 | …… |
则m、n的大小关系为( )
A. m>n B. m<n C. m=n D. 无法确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系xOy中的点P和⊙M,给出如下定义:若⊙M上存在两个点A,B,使AB=2PM,则称点P为⊙M的“美好点”.
(1)当⊙M半径为2,点M和点O重合时,
①点P1(-2,0),P2(1,1),P3(2,2)中,⊙O的“美好点”是______;
②点P为直线y=x+b上一动点,点P为⊙O的“美好点”,求b的取值范围;
(2)点M为直线y=x上一动点,以2为半径作⊙M,点P为直线y=4上一动点,点P为⊙M的“美好点”,求点M的横坐标m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=mx2+2mx+n与x轴的一个交点为A(﹣3,0),与y轴的负半轴交于点C.
(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;
(2)点C关于x轴的对称点为点D,当点D在以AB为直径的半圆上时,求抛物线的解析式;
(3)在(2)的情况下,在抛物线上是否存在一点P,使BP,BD,AB三条之中,其中一条是另两条所夹角的角平分线?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,然后沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1: (斜坡的铅直高度与水平宽度的比),经过测量AB=10米,AE=15米.
(1)求点B到地面的距离;
(2)求这块宣传牌CD的高度.(测角器的高度忽略不计,结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,一枚质地均匀的骰子,骰子有六个面并分别标有数字1,2,3,4,5,6.如图2,有,,,,,,7个圈,相邻两个圈间距相等.跳圈游戏的规则为:游戏者每掷一次骰子,骰子向上的一面上的数字是几,就从圈开始向前连续跳几个间距.如:从圈起跳,第一次掷得3,就连续跳3个间距,跳到圈;若第二次掷得3,就从开始连续跳3个间距,跳到圈;若第二次掷得4,就从圈开始连续跳4个间距,跳到圈后返回到圈;…设游戏者从圈起跳.
(1)小明随机掷一次骰子,求跳到圈的概率;
(2)小亮随机掷两次骰子,用列表法或画树状图法求最后跳到圈的概率,并指出他与小明跳到圈的可能性一样吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B,C,已知A(﹣1,0),C(0,3).
(1)求抛物线的解析式;
(2)如图1,P为线段BC上一动点,过点P作y轴的平行线,交抛物线于点D,是否存在这样的P点,使线段PD的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;
(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是直线EF上一动点,M(m,0)是x轴一个动点,请直接写出CN+MN+MB的最小值以及此时点M、N的坐标,直接写出结果不必说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l1:y=x+b与直线l2:y=kx+7交于点A(2,4),直线l1与x轴交于点C,与y轴交于点B,将直线l1向下平移7个单位得到直线l3,l3与y轴交于点D,与l2交于点E,连接AD.
(1)求交点E的坐标;
(2)求△ADE的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com