【题目】如图,锐角△ABC 中 BC=a,AC=b,AB=c,记三角形 ABC 的面积为 S.
(1)求证:S=absinC;
(2)求证:.
【答案】(1)见解析;(2)见解析
【解析】
(1)过A作AH⊥BC于H,可得AH=b×sinC,依据三角形ABC的面积=×BC×AH,即可得到S=absinC;
(2)过点C作CD⊥AB于D,在Rt△ADC和Rt△BDC中,∠ADC=∠BDC=90°,可得sinA=,sinB=,由此可得.同理可证,进而得到结论.
(1)如图,过A作AH⊥BC于H,则
Rt△ACH中,sinC=,
∴AH=b×sinC,
∵三角形ABC的面积=×BC×AH,
∴S=absinC;
(2)如图,过点C作CD⊥AB于D,
在Rt△ADC和Rt△BDC中,∠ADC=∠BDC=90°,
则sinA=,sinB=,
∴,,
∴.
过点A作AH⊥BC于H,同理可证.
∴ .
科目:初中数学 来源: 题型:
【题目】如图,若四边形、四边形都是正方形,显然图中有,;
当正方形绕旋转到如图的位置时,是否成立?若成立,请给出证明;若不成立,请说明理由;
当正方形绕旋转到如图的位置时,延长交于,交于.
①求证:;
②当,时,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从﹣3、﹣2、﹣1、1、2、3这六个数中,随机抽取一个数记作a,使关于x的分式方程有整数解,且使直线y=3x+8a﹣17不经过第二象限,则符合条件的所有a的和是( )
A.﹣4B.﹣1C.0D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=1,CD=.
(1)求证:△ABP∽△PCD;
(2)求△ABC的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点,且∠EAF=60°,请探究图中线段BE,EF,FD之间的数量关系是什么?
小明探究此问题的方法是:延长FD到点G,使DG=BE,连结AG.先证明△ABE≌△ADG,得AE=AG;再由条件可得∠EAF=∠GAF,证明△AEF≌△AGF,进而可得线段BE,EF,FD之间的数量关系是 .
(2)拓展应用:
如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD.问(1)中的线段BE,EF,FD之间的数量关系是否还成立?若成立,请给出证明;若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=6cm,∠ABC=30°,动点P从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒cm的速度向点B匀速运动,运动时间为t秒(0≤t≤6),连接PQ,以PQ为直径作⊙O.
(1)当t=1时,求△BPQ的面积;
(2)设⊙O的面积为y,求y与t的函数解析式;
(3)若⊙O与Rt△ABC的一条边相切,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】填写下列证明过程中的推理根据:
已知:如图所示,AC,BD相交于O,DF平分∠CDO与AC相交于F,BE平分于∠ABO与AC相交于E,∠A=∠C.求证:∠1=∠2.
证明:∵∠A=∠C(________),
∴AB∥CD (__________________________________),
∴∠ABO=∠CDO (__________________________________),
又∵∠1=CDO,∠2=∠ABO (__________________________________),
∴∠1=∠2(____________________).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】浚县古城是闻名遐迩的历史文化名城,“元旦”期间相关部门对到浚县观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),根据图中的信息,下列结论错误的是( )
A.此次调查的总人数为5000人
B.扇形图中的为10%
C.样本中选择公共交通出行的有2500人
D.若“元旦”期间到浚县观光的游客有5万人,则选择自驾方式出行的有2.5万人
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系xOy中(如图),抛物线y=ax2-4与x轴的负半轴相交于点A,与y轴相交于点B,AB=2.点P在抛物线上,线段AP与y轴的正半轴交于点C,线段BP与x轴相交于点D,设点P的横坐标为m.
(1)求这条抛物线的解析式;
(2)用含m的代数式表示线段CO的长;
(3)当tan∠ODC=时,求∠PAD的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com