精英家教网 > 初中数学 > 题目详情

【题目】如图,若四边形、四边形都是正方形,显然图中有

当正方形旋转到如图的位置时,是否成立?若成立,请给出证明;若不成立,请说明理由;

当正方形旋转到如图的位置时,延长,交

求证:

时,求的长.

【答案】成立.证明见解析;(2)证明见解析,.

【解析】

(1)利用SAS△ADG≌△CDE即可;
(2)①同样先证明△ADG≌△CDE,得出∠DAG=∠DCE,而∠DCM+∠DMC=90°,从而∠DAG+∠AMH=90°,结论显然;
连接AC、CG,注意到DG∥AC,△GAC△DAC的面积相等,于是考虑用等积变换,求出AG即可求出CH.

成立.

证明:四边形、四边形是正方形,

类似可得

连接,交,连接

由题意有

,∴

为底边的的高为,(延长画高)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知△PDC⊙O的内接三角形,CP=CD,若将△PCD绕点P顺时针旋转,当点C刚落在⊙O上的A处时,停止旋转,此时点D落在点B处.

(1)求证:PB⊙O相切;

(2)当PD=2,∠DPC=30°时,求⊙O的半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间 x(小时)之间的函数图象.

(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;

(2)当它们行驶了7小时时,两车相遇,求乙车速度及乙车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;

(3)当两车相距100千米时,求甲车行驶的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形纸片中,,点是边上的一点,将纸片沿折叠,点落在处,恰好经过的中点,则的度数是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请在下列横线上注明理由.

如图,在中,点在边上,点在线段上,若,点的距离相等.求证:点的距离相等.

证明:∵(已知),

______),

______),

(已知),

______),

∵点的距离相等(已知),

的角平分线(______),

(角平分线的定义),

______),

平分(角平分线的定义),

∴点的距离相等(______).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】6如图,在建立了平面直角坐标系的正方形网格中,A2,2B1,0C3,1

1画出ΔABC关于x轴对称的ΔA1B1C1

2画出将ΔABC绕点B逆时针旋转900,所得的ΔA2B2C2

3直接写出A2点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(3,6)、B(9,一3),以原点O为位似中心,相似比为,把ABO缩小,则点A的对应点A的坐标是

A.(1,2)

B.(9,18)

C.(9,18)或(9,18)

D.(1,2)或(1,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC=10B=30°O是线段AB上的一个动点,以O为圆心,OB为半径作⊙OBC于点D,过点D作直线AC的垂线,垂足为E

1)求证:DE是⊙O的切线;

2)设OB=x,求∠ODE的内部与ABC重合部分的面积y的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,锐角△ABC BC=a,AC=b,AB=c,记三角形 ABC 的面积为 S.

(1)求证:S=absinC;

(2)求证:.

查看答案和解析>>

同步练习册答案