【题目】如图,已知△PDC是⊙O的内接三角形,CP=CD,若将△PCD绕点P顺时针旋转,当点C刚落在⊙O上的A处时,停止旋转,此时点D落在点B处.
(1)求证:PB与⊙O相切;
(2)当PD=2,∠DPC=30°时,求⊙O的半径长.
【答案】(1)详见解析;(2)2.
【解析】
(1)连接OA、OP,由旋转可得:△PAB≌△PCD,再由全等三角形的性质可知AP=PC=DC,再根据∠BPA=∠DPC=∠D可得出∠BPO=90°,进而可知PB与⊙O相切;
(2)过点A作AE⊥PB,垂足为E,根据∠BPA=30°,PB=2,△PAB是等腰三角形,可得出BE=EP=,PA=2,PB与⊙O相切于点P可知∠APO=60°,故可知PA=2.
(1)证明:连接OA、OP,OC,由旋转可得:△PAB≌△PCD,
∴PA=PC=DC,
∴AP=PC=DC,∠AOP=∠POC=2∠D,∠APO=∠OAP=,
又∵∠BPA=∠DPC=∠D,
∴∠BPO=∠BPA+=90°
∴PB与⊙O相切;
(2)解:过点A作AE⊥PB,垂足为E,
∵∠BPA=30°,PB=2,△PAB是等腰三角形;
∴BE=EP=,
PA===2
又∵PB与⊙O相切于点P,
∴∠APO=60°,
∴OP=PA=2.
科目:初中数学 来源: 题型:
【题目】(1)探究新知:如图1,已知△ABC与△ABD的面积相等, 试判断AB与CD的位置关系,并说明理由.
(2)结论应用:如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F. 试证明:MN∥EF.
(3)变式探究:如图3,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,过点M作MG⊥x轴,过点N作NH⊥y轴,垂足分别为E、F、G、H. 试证明:EF ∥GH.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在△ABC中,BC=AC,以BC为直径的⊙O与边AB、AC分别交于点D、E,DF⊥AC于点F.
(1)求证:点D是AB的中点;
(2)判断DF与⊙O的位置关系,并证明你的结论;
(3)若⊙O的半径为10,sinB=,求阴影部分面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的⊙C与边AD有两个交点时,半径CE的取值范围是( )
A. 0<CE≤8 B. 0<CE≤5 C. 3<CE≤8 D. 3<CE≤5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.
(1)求证:DH是圆O的切线;
(2)若,求证:A为EH的中点.
(3)若EA=EF=1,求圆O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A是半径为6cm的⊙O上的定点,动点P从A出发,以πcm/s的速度沿圆周按顺时针方向运动,当点P回到A时立即停止运动.设点P运动时间为t(s);
(1)当t=6s时,∠POA的度数是________;
(2)当t为多少时,∠POA=120°;
(3)如果点B是OA延长线上的一点,且AB=AO,问t为多少时,△POB为直角三角形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.
(1)图中还有几对全等三角形,请你一一列举;
(2)求证:CF=EF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)勾股定理的证法多样,其中“面积法”是常用方法,小明发现:当四个全等的直角三角形如图摆放时,可以用“面积法”来证明勾股定理.(写出勾股定理的内容并证明)
(2)已知实数x,y,z满足:,试问长度分别为x、y、z的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,若四边形、四边形都是正方形,显然图中有,;
当正方形绕旋转到如图的位置时,是否成立?若成立,请给出证明;若不成立,请说明理由;
当正方形绕旋转到如图的位置时,延长交于,交于.
①求证:;
②当,时,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com