【题目】(1)探究新知:如图1,已知△ABC与△ABD的面积相等, 试判断AB与CD的位置关系,并说明理由.
(2)结论应用:如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F. 试证明:MN∥EF.
(3)变式探究:如图3,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,过点M作MG⊥x轴,过点N作NH⊥y轴,垂足分别为E、F、G、H. 试证明:EF ∥GH.
【答案】(1)AB∥CD,理由见解析;(2)、(3)证明见解析
【解析】
(1)分别过点C、D作CG⊥AB、DH⊥AB,垂足为G、H,根据三角形的面积求出CG=DH,推出平行四边形CGDH即可;
(2)证△EMF和△NEF的面积相等,根据(1)即可推出答案
(3)利用OE·OG=OF·OH证△OEF∽△OHG,即可得出结论
(1)证明:分别过点C,D,作CG⊥AB,DH⊥AB,垂足为G,H,则∠CGA=∠DHB=90°.
∴ CG∥DH.
∵△ABC与△ABD的面积相等,
∴ CG=DH.
∴ 四边形CGHD为平行四边形.
∴ AB∥CD.
(2)①证明:连结MF,NE.
设点M的坐标为(x1,y1),点N的坐标为(x2,y2).
∵ 点M,N在反比例函数(k>0)的图象上,
∴,.
∵ ME⊥y轴,NF⊥x轴,
∴ OE=y1,OF=x2.
∴ S△EFM=,
S△EFN=.
∴S△EFM=S△EFN.
由(1)中的结论可知:MN∥EF.
(3)连接FM、EN、MN,
同(2)可证MN∥EF,
同法可证GH∥MN,
故EF ∥GH.
科目:初中数学 来源: 题型:
【题目】如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.
(1)求证:△BDE≌△BCE;
(2)试判断四边形ABED的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,∠A=∠B=30°,E,F 在 AB 上,∠ECF=60°.
(1)画出△BCF 绕点 C 顺时针旋转 120°后的△ACK;
(2)在(1)中,若 AE2+ EF2= BF2,求证 BF= CF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函y=kx+b的图象经过点A(-2,4),且与正比例函数的图象交于点B(a,2).
(1)求a的值及一次函数y=kx+b的解析式;
(2)若一次函数y=kx+b的图象与x轴交于点C,且正比例函数y=-x的图象向下平移m(m>0)个单位长度后经过点C,求m的值;
(3)直接写出关于x的不等式0<<kx+b的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,函数y1=-x+4的图象与函数y2= (x>0)的图象交于 A(a,1)、B(1,b)两点.
(1)求a,b及y2的函数关系式;
(2)观察图象,当x>0时,比较y1与y2大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将函数的图象沿y轴向上平移得到新函数图象,其中原函数图象上的两点A(1,m)、B(4,n)平移后对应新函数图象上的点分别为点A′、B′.若阴影部分的面积为6,则新函数的表达式为( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,点P在射线AC上,作点P关于直线CD的对称点Q,作射线BQ交射线DC于点E,连接BP.
(1)当点P在线段AC上时,如图1.
①依题意补全图1;
②若EQ=BP,则∠PBE的度数为 ,并证明;
(2)当点P在线段AC的延长线上时,如图2.若EQ=BP,正方形ABCD的边长为1,请写出求BE长的思路.(可以不写出计算结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB、CD相交于点O,∠AOC=30°,⊙P的半径为1cm,且OP=6cm,如果⊙P以1cm/s的速度沿由A向B的方向移动,那么多少秒后⊙P与直线CD相切( )
A. 4或8 B. 4或6 C. 8 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△PDC是⊙O的内接三角形,CP=CD,若将△PCD绕点P顺时针旋转,当点C刚落在⊙O上的A处时,停止旋转,此时点D落在点B处.
(1)求证:PB与⊙O相切;
(2)当PD=2,∠DPC=30°时,求⊙O的半径长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com