精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC 中,∠A=∠B=30°,E,F AB 上,∠ECF=60°.

(1)画出△BCF 绕点 C 顺时针旋转 120°后的△ACK;

(2)在(1)中,若 AE2+ EF2= BF2,求证 BF= CF.

【答案】(1)详见解析;(2)详见解析.

【解析】

(1)旋转后CBCA重合,作∠KCA=∠FCB,截取KC=FC即可;(2)连结KE,作KH⊥ACH,先得到∠ACE+∠BCF=60°,再根据旋转的性质得BF=AK,∠KCA=∠FCB,CK=CF,∠KAC=∠B=30°,则∠KCE=∠FCE,可根据“SAS”判断△CKE≌△CFE,所以KE=EF,由于AE2+EF2=BF2,则AE2+KE2=AK2,根据勾股定理的逆定理得∠AEK=90°,且∠KEC=∠FEC=45°,可计算∠BCF=45°,设KH=a,在Rt△KHC中可得KC=a;在Rt△KHA中得AK=2a,所以AK:KC=2a:a=,则BF:CF=,由此即可得结论.

(1)如图,

(2)证明:连结KE,作KH⊥ACH,如图,

∵∠A=∠B=30°,∠MCN=60°,

∴∠ACB=120°,

∴∠ACE+∠BCF=60°,

∵△BCF绕点C顺时针旋转120゜后的△ACK,

∴BF=AK,∠KCA=∠FCB,CK=CF,∠KAC=∠B=30°,

∴∠KCE=∠KCA+∠ACE=∠FCB+∠ACE=60°,

∴∠KCE=∠FCE,

在△CKE和△CFE中,

∴△CKE≌△CFE,

∴KE=EF,∠KEC=∠FEC,

∵AE2+EF2=BF2

∴AE2+KE2=AK2

∴△AEK为直角三角形,

∴∠AEK=90°,

∴∠KEC=∠FEC=45°,

∴∠BCF=180°-45°-60°-30°=45°,

∴∠KCA=45°,

KH=a,在Rt△KHC中,KC=a;

Rt△KHA中,∠KAC =30°,

∴AK=2a,

∴AK:KC=2a:a=

∴BF:CF=

BF=CF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,是学习分式方程应用时,老师板书的问题和两名同学对该题的解答.(老师找聪聪和明明分别用不同的方法解答此题)

1)聪聪同学所列方程中的表示_______________________________________.

2)明明一时紧张没能做出来,请你帮明明完整的解答出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】古埃及人用下面的方法得到直角三角形,把一根长绳打上等距离的13个结(12段),然后用桩钉钉成一个三角形,如图1,其中∠C便是直角.

1)请你选择古埃及人得到直角三角形这种方法的理由   (填AB

A.勾股定理:在直角三角形边的两直角边的平方和等于斜边的平方

B.勾股定理逆定理:如果三角形的三边长abc有关系:a2+b2c2,那么这个三角形是直角三角形

2)如果三个正整数abc满足a2+b2c2,那么我们就称 abc是一组勾股数,请你写出一组勾股数   

3)仿照上面的方法,再结合上面你写出的勾股数,你能否只用绳子,设计一种不同于上面的方法得到一个直角三角形(在图2中,只需画出示意图.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,D在边AC上,且

如图1,填空____________

如图2,若M为线段AC上的点,过M作直线H,分别交直线ABBC与点NE

求证:是等腰三角形;

试写出线段ANCECD之间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(3,﹣1)

1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1的坐标;

2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标;

3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:

85

80

75

80

90

73

83

79

90

(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.

(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分(不计其他因素条件),请你说明谁将被录用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,ABC=60°,BD平分∠ADC.

(1)试说明△ABC是等边三角形;

(2)AD=2,DC=4,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)探究新知:如图1,已知△ABC△ABD的面积相等, 试判断ABCD的位置关系,并说明理由.

2)结论应用:如图2,点MN在反比例函数k0)的图象上,过点MME⊥y轴,过点NNF⊥x轴,垂足分别为EF 试证明:MN∥EF

3)变式探究:如图3,点MN在反比例函数k0)的图象上,过点MME⊥y轴,过点NNF⊥x轴,过点MMG⊥x轴,过点NNH⊥y轴,垂足分别为EFGH 试证明:EF ∥GH

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在ABC中,BC=AC,以BC为直径的O与边AB、AC分别交于点D、E,DFAC于点F.

(1)求证:点D是AB的中点;

(2)判断DF与O的位置关系,并证明你的结论;

(3)若O的半径为10,sinB=,求阴影部分面积.

查看答案和解析>>

同步练习册答案