精英家教网 > 初中数学 > 题目详情

【题目】如图,已知:点A、B、C、D在⊙O上,AB=CD,下列结论:①∠AOC=∠BOD;②∠BOD=2∠BAD;③AC=BD;④∠CAB=∠BDC;⑤∠CAO+∠CDO=180°.其中正确的个数为(  )

A. 2 B. 3 C. 4 D. 5

【答案】C

【解析】

根据圆内接四边形的性质、圆周角定理和圆心角、弧、弦之间的关系逐个判断即可.

AB=CD,

∴∠AOC=BOD,故①正确;

∵圆周角∠BAD和圆心角∠BOD都对着

∴∠BOD=2BAD,故②正确;

AC=BD,故③正确;

∵圆周角∠CAB和∠BDC都对着

∴∠CAB=BDC,故④正确;

延长DO交⊙OM,连接AM,

D、C、A、M四点共圆,

∴∠CDO+CAM=180°(圆内接四边形对角互补),

∵∠CAM>CAO,

∴∠CAO+CDO<180°,故⑤错误;

即正确的个数是4个,

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某超市准备购进甲、乙两种品牌的文具盒,甲、乙两种玩具盒的进价和售价如下表,预计购进乙品牌文具盒的数量y(个)与甲品牌玩具盒数量x(个)之间的函数关系如图所示.

进价(元)

15

30

售价(元)

20

38

1yx之间的函数关系式是   

2)若超市准备用不超过6000元购进甲、乙两种文具盒,则至少购进多少个甲种文具盒?

3)在(2)的条件下,写出销售所得的利润W(元)与x(个)之间的关系式,并求出获得的最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在任意四边形ABCD中,MNPQ分别是ABBCCDDA上的点,对于四边形MNPQ的形状,以下结论中,错误的是  

A. MNPQ是各边中点,四边MNPQ一定为平行四边形

B. MNPQ是各边中点,且时,四边形MNPQ为正方形

C. MNPQ是各边中点,且时,四边形MNPQ为菱形

D. MNPQ是各边中点,且时,四边形MNPQ为矩形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,EAD上一点,连接BEFBE中点,且AF=BF

1)求证:四边形ABCD为矩形;

2)过点FFGBE,垂足为F,交BC于点G,若BE=BCSBFG=5CD=4,求CG

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,E、F是平行四边行ABCD的对角线AC上的 两点,AE=CF。

求证:(1)△ADF≌△CBE

(2)EB∥DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=-

(1)将y=-+x+用配方法化为y=a(x-h)2+k的形式;

(2)求该函数图象与两坐标轴交点的坐标;

(3)画出该函数的图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边ABC的周长为18cmBDAC边上的中线,动点PQ分别在线段BCBD上运动,连接CQPQ,当BP长为_____cm时,线段CQ+PQ的和为最小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y=ax+b与反比例函数,其中ab0ab为常数,它们在同一坐标系中的图象可以是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.

(1)求抛物线的函数关系式;

(2)设点P是直线l上的一个动点,当PAC的周长最小时,求点P的坐标;

(3)在直线l上是否存在点M,使MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案