【题目】某汽车制造厂开发一款新式电动汽车,计划一年生产安装240辆。由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?
(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?
【答案】(1)每名熟练工每月可以安装4辆电动车,新工人每月分别安装2辆电动汽车
(2)调熟练工1人,新工人8人;调熟练工2人,新工人6人;调熟练工3人,新工人4人;调熟练工4人,新工人2人;
(3)选择方案三
【解析】
(1)设每名熟练工每月可以安装x辆电动车,新工人每月分别安装y辆电动汽车
,解之得.
每名熟练工每月可以安装4辆电动车,新工人每月分别安装2辆电动汽车
(2)设调熟练工m人,由题意得,,因为0<n<10, 当m=1,2,3,4时n=8,6,4,2
调熟练工1人,新工人8人;调熟练工2人,新工人6人;调熟练工3人,新工人4人;调熟练工4人,新工人2人;
(3)方案一:;方案二:;
方案三:.
科目:初中数学 来源: 题型:
【题目】已知△ABC的外角∠EAC的平分线AD交其外接圆⊙O于点D,连接DB,DC.
(1)如图1,求证BD=CD;
(2)如图2,若AC是⊙O的直径,sin∠BDC=,求tan∠DBA的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在社会实践课上,小聪所在小组要测量一条小河的宽度,如图,河岸EF∥MN,小聪在河岸MN上的点A处测得河对岸小树C位于东北方向,然后向东沿河岸走了30米,到达B处测得河对岸小树D位于北偏东30°的方向,又有同学测得CD=10米
(1)∠EAC= 度,∠DBN= 度;
(2)求小河的宽度AE.(结果精确到0.1米,参考数据:≈1.414,≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,射线AG为⊙O的切线,点A为切点,点C为射线AG上任意一点,连接OC交⊙O于点E,过点B作BD∥OC交⊙O于点D,连接CD,DE,OD.
(1)求证:△OAC≌△ODC;
(2)①当∠OCA的度数为 时,四边形BOED为菱形;
②当∠OCA的度数为 时,四边形OACD为正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的三个顶点和点O都在正方形网格的格点上,每个小正方形的边长都为1.
(1)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;
(2)请画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】成都市第十三次党代会提出实施“东进”战略,推动了城市发展格局“千年之变”成都龙泉山城市森林公园借“东进”之风,聚全市之力,着力打造一个令世界向往的城市中心,如图为成都市龙泉山城市豪林公园三个景点A,B,C的平面示意图,景点C在B的正北方向5千米处,景点A在B的东北方向,在C的北偏东75°方向上.
(1)∠BAC的大小
(2)求景点A,C的距离(=1.414,=1.732,sin75°≈0.966,cos75°≈0.259,tan75°≈3.732,结果精确到0.1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AM是△ABC的中线,点D在线段AM上[点D不与点A重合),过点D作DF∥AB交AC边于点F,过点C作CE∥AM交DF的延长线于点E,连接AE.
(1)如图1,当点D与点M重合时,求证:四边形ABDE是平行四边形;
(2)如图2,当点D不与点M重合时,过点M作MG∥DE交EC于点G,连接BD、AG在不添加任何辅助线的情况下,请直接写出图中所有的平行四边形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com