精英家教网 > 初中数学 > 题目详情

【题目】已知AM是△ABC的中线,点D在线段AM上[点D不与点A重合),过点DDFABAC边于点F,过点CCEAMDF的延长线于点E,连接AE

1)如图1,当点D与点M重合时,求证:四边形ABDE是平行四边形;

2)如图2,当点D不与点M重合时,过点MMGDEEC于点G,连接BDAG在不添加任何辅助线的情况下,请直接写出图中所有的平行四边形.

【答案】1)见解析;(2)图中所有的平行四边形为平行四边形ABMG,平行四边形AMCG,平行四边形DEGM,平行四边形ABDE.

【解析】

(1)由平行线的性质得出∠EDC=∠ABD,∠ECD=∠ADB,由中线性质得出BD=DC,证明△ABD≌△EDC,得出AB=ED,即可得出结论;
(2)同(1)得:四边形ABMG是平行四边形,得出AG∥BC,AB=MG,由CE∥AM,得出四边形AMCG是平行四边形,由MG∥DE,CE∥AM,得出四边形DEGM是平行四边形,得出DE=MG,证出AB=DE,即可得出四边形ABDE是平行四边形.

解:(1)证明:∵DFABCEAM

∴∠EDC=∠ABD,∠ECD=∠ADB

AM是△ABC的中线,且DM重合,

BDDC

在△ABD和△EDC中,

∴△ABD≌△EDCASA),

ABED

ABED

∴四边形ABDE是平行四边形;

2)图中所有的平行四边形为平行四边形ABMG,平行四边形AMCG,平行四边形DEGM,平行四边形ABDE;理由如下:

同(1)得:四边形ABMG是平行四边形,

AGBCABMG

CEAM

∴四边形AMCG是平行四边形,

MGDECEAM

∴四边形DEGM是平行四边形,

DEMG

ABDE

又∵DFAB

∴四边形ABDE是平行四边形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,菱形ABCD中,直线l⊥边AB,并从点A出发向右平移,设直线l在菱形ABCD内部截得的线段EF的长为y,平移距离xAFyx之间的函数关系的图象如图2所示,则菱形ABCD的面积为(  )

A.3B.C.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某汽车制造厂开发一款新式电动汽车,计划一年生产安装240辆。由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.

1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?

2)如果工厂招聘n0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?

3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC是等腰三角形,顶角BAC=<600,D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转到AE,过点E作BC的平行线,交AB于点F,连接DE、BE、DF

(1)求证:BE=CD

(2)若ADBC,试判断四边形BDFE的形状,并给出证明。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中每个小正方形的边长都是1个单位长度,RtABC的三个顶点A(-2,2),B(0,5),C(0,2).

(1)ABC以点C为旋转中心旋转180°,得到A1B1C,请画出A1B1C的图形.

(2)平移ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的A2B2C2的图形.

(3)若将A1B1C绕某一点旋转可得到A2B2C2,请直接写出旋转中心的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,曲线C2是双曲线C1y x0)绕原点O逆时针旋转60°得到的图形,P是曲线C2上任意一点,点A在直线lyx上,且PAPO,则△POA的面积等于(  )

A.B.6C.3D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数yax1)(x5)(a0)的图象与x轴交于AB两点(点A在点B的左侧),与y轴交于P点,过其顶点C作直线CHx轴于点H

1)若∠APB30°,请直接写出满足条件的点P的坐标;

2)当∠APB最大时,请求出a的值;

3)点POCB能否在同一个圆上?若能,请求出a的值,若不能,请说明理由.

4)若a ,在对称轴HC上是否存在一点Q,使∠AQP=∠ABP?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数与反比例函数的图象相交于点.

(1)求一次函数和反比例函数的解析式;

(2)若定义横、纵坐标均为整数的点叫做好点,则图中阴影部分区域内(不含边界)好点的个数为________

(3)请根据图象直接写出不等式的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCDDEFG都是正方形,边长分别为mnmn).坐标原点OAD的中点,ADEy轴上.若二次函数yax2的图象过CF两点,则_____

查看答案和解析>>

同步练习册答案