【题目】如图,AB为⊙O的直径,射线AG为⊙O的切线,点A为切点,点C为射线AG上任意一点,连接OC交⊙O于点E,过点B作BD∥OC交⊙O于点D,连接CD,DE,OD.
(1)求证:△OAC≌△ODC;
(2)①当∠OCA的度数为 时,四边形BOED为菱形;
②当∠OCA的度数为 时,四边形OACD为正方形.
【答案】(1)证明见解析;(2)①∠OCA=30°,②∠OCA=45°.
【解析】
(1)依据SAS可证明△OAC≌△ODC;
(2)①依据菱形的四条边都相等,可得△OBD是等边三角形,则∠AOC=∠OBD=60°,求出∠OCA=30°;②由正方形的性质得出∠ACD=90°,则∠ACO=45°.
(1)证明:∵OB=OD,
∴∠B=∠ODB,
∵BD∥OC,
∴∠AOC=∠B,∠DOC=∠ODB,
∴∠AOC=∠COD,
∵OA=OD,OC=OC,
∴△OAC≌△ODC(SAS);
(2)①∵四边形BOED是菱形,
∴OB=DB.
又∵OD=OB,
∴OD=OB=DB.
∴△OBD为等边三角形,
∴∠OBD=60°.
∵CO∥DB,
∴∠AOC=60°,
∵射线AG为⊙O的切线,
∴OA⊥AC,
∴∠OAC=90°,
∴∠OCA=∠OAC﹣∠AOC=90°﹣60°=30°,
②∵四边形OADC是正方形,
∴∠ACD=90°,
∵∠ACO=∠DCO,
∴∠OCA=45°,
故答案为:30°,45°.
科目:初中数学 来源: 题型:
【题目】如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为( )
A. 4 B. 3 C. 2 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,菱形ABCD中,直线l⊥边AB,并从点A出发向右平移,设直线l在菱形ABCD内部截得的线段EF的长为y,平移距离x=AF,y与x之间的函数关系的图象如图2所示,则菱形ABCD的面积为( )
A.3B.C.2D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CD=4,∠C=90°,点B在线段CD上,,沿AB所在的直线折叠△ACB得到△AC′B,若△DC′B是以BC'为腰的等腰三角形,则线段CB的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD平分∠BAC,按如下步作图:①分别以点A,D为圆心,以大于AD的长为半径在AD两侧作弧,两弧交于两点M,N;②作直线MN分别交AB,AC于点E,F;③连接DE,DF,若BD=6,AE=4,CD=3,则CF的长是( )
A.1B.1.5C.2D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+5与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c与直线y=﹣x+5交于B,C两点,已知点D的坐标为(0,3)
(1)求抛物线的解析式;
(2)点M,N分别是直线BC和x轴上的动点,则当△DMN的周长最小时,求点M,N的坐标,并写出△DMN周长的最小值;
(3)点P是抛物线上一动点,在(2)的条件下,是否存在这样的点P,使∠PBA=∠ODN?若存在,请直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某汽车制造厂开发一款新式电动汽车,计划一年生产安装240辆。由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?
(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC是等腰三角形,顶角∠BAC=(<600),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转到AE,过点E作BC的平行线,交AB于点F,连接DE、BE、DF
(1)求证:BE=CD
(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数与反比例函数的图象相交于点和.
(1)求一次函数和反比例函数的解析式;
(2)若定义横、纵坐标均为整数的点叫做好点,则图中阴影部分区域内(不含边界)好点的个数为________;
(3)请根据图象直接写出不等式的解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com