【题目】如图,矩形OABC的顶点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了秒.
(1)当时,求PC的长;
(2)当为何值时,△NPC是以PC为腰的等腰三角形?
【答案】(1)当时, ;(2)当或时,△NPC是以PC为腰的等腰三角形.
【解析】试题分析:(1)利用平行于三角形底边所构成对应边成比例得到,代入数据求值.(2)随着M,N点的运动,当PC=PN时, 利用矩形的性质,BC=CN+BN,求得x值 ;当PC=CN时,列出对应边成比例,代入求值.
试题解析:
(1)∵ 点A(4,0),B(4,3),∴ OA=4,AB=3,
在矩形OABC中,BC=OA=4,OC=AB=3,∠AOC=∠BCO=90°,
在Rt△AOC中, ,
依题知:OM=BN==1,又PM⊥OA ,∴ PM∥OC,
∴,∴ ,∴ ,
∴ 当时, .
(2)①当PC=PN时,△NPC是以PC为腰的等腰三角形,
延长MP交BC于点为D,
在矩形OABC中,BC∥OA ,∴ PD⊥BC ,
又∠AOC=∠BCO=90°,
∴ 四边形OCDM为矩形 ,∴ CD=OM=,
又PC=PN,PD⊥BC ,∴ CN=2CD=,
∵ BC=CN+BN ,∴ ,∴ ,
∴ 当时,△NPC是以PC为腰的等腰三角形.
② 当PC=CN时,△NPC是以PC为腰的等腰三角形,
由上面知:CN=BC-BN==PC, ∵ PM∥OC ,
∴, ∴, ∴,
∴ 当时,△NPC是以PC为腰的等腰三角形;
综上所述,当或时,△NPC是以PC为腰的等腰三角形.
科目:初中数学 来源: 题型:
【题目】已知抛物线经过原点O及点A和点B.
(1)求抛物线的解析式;
(2)如图1,设抛物线的对称轴与x轴交于点C,将直线沿y轴向下平移n个单位后得到直线l,若直线l经过B点,与y轴交于点D,且与抛物线的对称轴交于点E.若P是抛物线上一点,且PB=PE,求点P的坐标;
(3)如图2,将抛物线向上平移9个单位得到新抛物线,直接写出下列两个问题的答案:
①直线至少向上平移多少个单位才能与新抛物线有交点?
②新抛物线上的动点Q到直线的最短距离是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.
(1)若他去买一瓶饮料,则他买到奶汁的概率是 ;
(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.
(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.
(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列资料,解决问题:
定义:在分式中,对于只含有一个字母的分式,当分子的次数小于分母的次数时,我们称之为“真分式”,如:,这样的分式就是真分式;当分子的次数大于或等于分母的次数时,我们称之为“假分式”,如:这样的分式就是假分式,假分式也可以化为带分式(即:整式与真分式的和的形式).
如:.
(1)分式是 (填“真分式”或“假分式”);
(2)将假分式分别化为带分式;
(3)如果分式的值为整数,求所有符合条件的整数x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示平面直角坐标系中,每个小正方形的边长均为1,△ABC的三个顶点均在格点上.
(1)以O为旋转中心,将△ABC逆时针旋转90°,画出旋转后的△A1B1C1;
(2)画出△A1B1C1关于原点对称的△A2B2C2;
(3)若△ABC内有一点P(a,b),结果上面两次变换后点P在△A2B2C2中的对应点为P′,则点P′的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=BC,以AB为直径的圆O交AC于点D,过点D作DE⊥BC,垂足为E,连接OE.
(1)求证:DE是⊙O的切线;
(2)若CD=,∠ACB=30°,求OE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.易证:CE=CF.
(1)在图1中,若G在AD上,且∠GCE=45°.试猜想GE,BE,GD三线段之间的数量关系,并证明你的结论.
(2)运用(1)中解答所积累的经验和知识,完成下面两题:
①如图2,在四边形ABCD中∠B=∠D=90°,BC=CD,点E,点G分别是AB边,AD边上的动点.若∠BCD=α,∠ECG=β,试探索当α和β满足什么关系时,图1中GE,BE,GD三线段之间的关系仍然成立,并说明理由.
②在平面直角坐标中,边长为1的正方形OABC的两顶点A,C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图3).设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?若不变,请直接写出结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com