【题目】如图,折叠边长为a的正方形ABCD,使点C落在边AB上的点M处(不与点A,B重合),点D落在点 N处,折痕EF分别与边BC、AD交于点E、F,MN与边AD交于点G.
证明:(1)△AGM∽△BME;
(2)若M为AB中点,则;
(3)△AGM的周长为2a.
【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.
【解析】
试题(1)根据正方形的性质和折叠的性质得出∠A=∠B,∠AGM=∠BME,再利用相似三角形的判定证明即可;
(2)设BE=x,利用勾股定理得出x的值,再利用相似三角形的性质证明即可;
(3)设BM=x,AM=a-x,利用勾股定理和相似三角形的性质证明即可.
试题解析:(1)∵四边形ABCD是正方形,
∴∠A=∠B=∠C=90°,
∴∠AMG+∠AGM=90°.
∵EF为折痕,∴∠GME=∠C=90°,
∴∠AMG+∠BME=90°,
∴∠AGM=∠BME.
在△AGM与△BME中,
∵∠A=∠B,∠AGM=∠BME,
∴△AGM∽△BME.
(2)∵M为AB中点,∴BM=AM=.
设BE=x,则ME=CE=a-x.
在Rt△BME中,∠B=90°,
∴BM2+BE2=ME2,即()2+x2=(a-x)2,
∴x=a,∴BE=a,ME=a.
由(1)知,△AGM∽△BME,
∴===.
∴AG=BM=a,GM=ME=a,
∴.
(3)设BM=x,则AM=a-x,ME=CE=a-BE.
在Rt△BME中,∠B=90°,
∴BM2+BE2=ME2,即x2+BE2=(a-BE)2,
解得:BE=-.
由(1)知,△AGM∽△BME,
∴==.
∵C△BME=BM+BE+ME=BM+BE+CE=BM+BC=a+x,
∴C△AGM=C△BME·=(a+x)·=2a.
科目:初中数学 来源: 题型:
【题目】如图,点B. F. C.E在一条直线上(点F,C之间不能直接测量),点A,D在直线l的异侧,测得AB=DE,AB∥DE,AC∥DF.
(1)求证:△ABC≌△DEF;
(2)若BE=13m,BF=4m,求FC的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图 AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.
(1)求证AD=AE;
(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=x+4的图象与二次函数y=ax(x﹣2)的图象相交于A(﹣1,b)和B,点P是线段AB上的动点(不与A、B重合),过点P作PC⊥x轴,与二次函数y=ax(x﹣2)的图象交于点C.
(1)求a、b的值
(2)求线段PC长的最大值;
(3)若△PAC为直角三角形,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(m,3),B(-3,n)两点.
(1)求一次函数的解析式;
(2)观察函数图象,直接写出关于x的不等式>kx+b的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了美化生活环境,小兰的爸爸要在院墙外的一块空地上修建一个矩形花圃.如图所示,矩形花圃的一边利用长10米的院墙,另外三条边用篱笆围成,篱笆的总长为32米.设AB的长为x米,矩形花圃的面积为y平方米.
(1)用含有x的代数式表示BC的长,BC= ;
(2)求y与x的函数关系式,写出自变量x的取值范围;
(3)当x为何值时,y有最大值?最大值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】通过整式乘法的学习,我们进一步了解了利用图形面积来说明法则、公式等的正确性的方法,例如利用图甲可以对平方差公式给予解释.图乙中的是一个直角三角形,,人们很早就发现直角三角形的三边满足的关系.图丙是2002年国际数学家大会的会徽,选定的是我国古代数学家赵爽用来证明勾股定理的弦图,弦图是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边长为,较长直角边长为,求出的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com