精英家教网 > 初中数学 > 题目详情

【题目】通过整式乘法的学习,我们进一步了解了利用图形面积来说明法则、公式等的正确性的方法,例如利用图甲可以对平方差公式给予解释.图乙中的是一个直角三角形,,人们很早就发现直角三角形的三边满足的关系.图丙是2002年国际数学家大会的会徽,选定的是我国古代数学家赵爽用来证明勾股定理的弦图,弦图是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边长为,较长直角边长为,求出的值.

【答案】25

【解析】

利用勾股定理可得的值,从局部和整体两种情况表示正方形的面积可求出的值,由完全平方公式可得结论.

即可得解

解:设大正方形的边长为,则

由题意,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织远游骑行活动,自行车队从甲地出发,目的地为乙地,在自行车队出发小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往乙地,到达乙地后立即按原路返回甲地.自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的.如图所示的是自行车队、邮政车离甲地的路程与自行车队离开甲地的时间的关系图象,请根据图象提供的信息,回答下列问题.

1)自行车队行驶的速度是 ;邮政车行驶的速度是 .

2)邮政车出发多少小时与自行车队相遇?

3)当邮政车与自行车队相距时,此时离邮政车出发经过了多少小时?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,折叠边长为a的正方形ABCD,使点C落在边AB上的点M处(不与点A,B重合),点D落在点 N处,折痕EF分别与边BC、AD交于点E、F,MN与边AD交于点G.

证明:(1)AGM∽△BME;

(2)若MAB中点,则

(3)AGM的周长为2a.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,AB是直径,CD是弦,ABCD

1P上一点(不与CD重合),求证:∠CPD=COB

2)点P在劣弧CD上(不与CD重合)时,∠CPD与∠COB有什么数量关系?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知相交于平分,若,连接,且.

1)求证:

2)连接,判断的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为和谐分式”.

1)下列分式中,___________是和谐分式(填写序号即可)

2)若为整数,且为和谐分式,请写出的值;

3)在化简时,

小冬和小奥分别进行了如下三步变形:

小冬:原式

小奥:原式

显然,小奥利用了其中的和谐分式, 第三步所得结果比小冬的结果简单,原因是: ,请你接着小奥的方法完成化简.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学生小明将线段的垂直平分线上的点,称作线段轴点”.其中,当时,称为线段长轴点;当时,称为线段短轴点”.

1)如图1,点的坐标分别为,则在中线段短轴点______.

2)如图2,点的坐标为,点轴正半轴上,且.

①若为线段长轴点,则点的横坐标的取值范围是(

A. B. C. D.

②点轴上的动点,点在线段的垂直平分线的同侧.为线段轴点,当线段的和最小时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,ABACD是直线BC上一点,以AD为一边在AD的右侧作ADE,使AEADDAEBAC,连接CE.设∠BACαDCEβ.

(1)如图①,点D在线段BC上移动时,角αβ之间的数量关系是____________,请说明理由;

(2)如图②,点D在线段BC的延长线上移动时,角αβ之间的数量关系是____________,请说明理由;

(3)当点D在线段BC的反向延长线上移动时,请在图③中画出完整图形并猜想角αβ之间的数量关系是________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是的角平分线上一点,过点PC于点于点,若,则=______________

查看答案和解析>>

同步练习册答案