精英家教网 > 初中数学 > 题目详情

【题目】祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是三晋大地的一种象征.某数学综合与实践小组的同学把测量斜拉索顶端到桥面的距离作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.

项目

内容

课题

测量斜拉索顶端到桥面的距离

测量示意图

说明:两侧最长斜拉索AC,BC相交于点C,分别与桥面交于A,B两点,且点A,B,C在同一竖直平面内.

测量数据

∠A的度数

∠B的度数

AB的长度

38°

28°

234

(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点CAB的距离(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)

(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).

【答案】(1)斜拉索顶端点CAB的距离为72;(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.(答案不唯一)

【解析】

(1)过点CCDAB于点D.解直角三角形求出DC即可;

(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等

(1)过点CCDAB于点D.

CD=x米,在RtADC中,∠ADC=90°,A=38°.

tan38°=

AD

RtBDC中,∠BDC=90°,B=28°.

tan28°=

BD

AD+BD=AB=234,

x+2x=234.

解得x=72.

答:斜拉索顶端点CAB的距离为72米.

(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.(答案不唯一)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD中,AB//DC,AB=DC,且AB=6cm,BC=8cm,对角线AC =10cm,

(1)求证:四边形ABCD是矩形;

(2)如图(2),若动点Q从点C出发,在CA边上以每秒5cm的速度向点A匀速运动,同时动点P从点B出发,在BC边上以每秒4cm的速度向点C匀速运动,运动时间为t秒(0≤t2),连接BQ、AP,若AP⊥BQ,求t的值;

(3)如图(3),若点Q在对角线AC上,CQ=4cm,动点P从B点出发,以每秒1cm的速度沿BC运动至点C止.设点P运动了t秒,请你探索:从运动开始,经过多少时间,以点Q、P、C为顶点的三角形是等腰三角形?请求出所有可能的结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课外阅读是提高学生素养的重要途径,某校为了了解学生课外阅读情况,随机抽查了50名学生,统计他们平均每天课外阅读时间(t小时),根据t的长短分为A,B,C,D四类.下面是根据所抽查的人数绘制的两幅不完整的统计图表,请根据图中提供的信息,解答下面的问题

(1)求表格中的a,并在图中补全条形统计图

(2)该校现有1300名学生,请你估计该校共有多少学生课外阅读时间不少于1小时.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某县教育局今年体育测试中,从某校毕业班中抽取男,女学生各15人进行三项体育成绩复查测试.在这个问题中,下列叙述正确的是(

A.该校所有毕业班学生是总体B.所抽取的30名学生是样本

C.样本的容量是15D.个体指的是毕业班每一个学生的体育测试成绩

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1=k1x+b(k1≠0)的图象分别与x轴,y轴相交于点A,B,与反比例函数y2= 的图象相交于点C(﹣4,﹣2),D(2,4).

(1)求一次函数和反比例函数的表达式;

(2)当x为何值时,y1>0;

(3)当x为何值时,y1<y2,请直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】宜宾某商店决定购进AB两种纪念品.购进A种纪念品7件,B种纪念品2件和购进A种纪念品5件,B种纪念品6件均需80元.

1)求购进AB两种纪念品每件各需多少元?

2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于750元,但不超过764元,那么该商店共有几种进货方案?

3)已知商家出售一件A种纪念品可获利a元,出售一件B种纪念品可获利(5a)元,试问在(2)的条件下,商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的证明:

已知:如图,AB∥DE,求证:∠D+∠BCD﹣∠B=180°,

证明:过点CCF∥AB.

∵AB∥CF(已知),

∴∠B=      ).

∵AB∥DE,CF∥AB( 已知 ),

∴CF∥DE (   

∴∠2+   =180° (   

∵∠2=∠BCD﹣∠1,

∴∠D+∠BCD﹣∠B=180° (   ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面的文字,解答问题:

大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用-1来表示的小数部分,你同意小明的表示方法吗?

事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.

又例如:∵,即

的整数部分为2,小数部分为(-2).

请解答:(1) 的整数部分是 ,小数部分是 .

(2)如果的小数部分为a 的整数部分为b,求a+b-的值;

(3)已知: 10+=x+y,其中x是整数,且0<y<1,求x-y的相反数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,ADBC于点DCEAB于点E.

(1)猜测∠1与∠2的关系,并说明理由;

(2)如果∠ABC是钝角,如图2(1)中的结论是否还成立?

查看答案和解析>>

同步练习册答案