精英家教网 > 初中数学 > 题目详情
14.(-5)-(-10)+(-32)

分析 先把减法转化为加法,减去一个数等于加上这个数的相反数,再利用有理数加运算法则:同号两数相加,取相同符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.

解答 解:(-5)-(-10)+(-32)
=(-5)+(+10)+(-32)
=(+5)+(-32)
=-(32-5)
=-27.

点评 此题考查有理数加减的运算法则,计算要仔细,是一道基础题,解决本题的关键是熟记有理数加法,加法法则.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.如图,抛物线y=ax2+bx+$\frac{3}{4}$经过M(-$\frac{1}{2}$,0),N($\frac{3}{2}$,0),正方形EADF、ABCD的边长均为m,边BC落在x轴上,点E、F在抛物线y=ax2+bx+$\frac{3}{4}$上.
(1)求此抛物线所对应的函数关系式;
(2)求此抛物线的对称轴;
(3)求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自P地出发到收工时所走路线(单位:千米)为:+11,-4,-3,+5,-6,+16,-4,-10,-6.问收工时距P地多远?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,抛物线y=x2+bx+c与y轴交于点A(0,$-\frac{25}{9}$),与过点A的直线交于点B($\frac{8}{3}$,-1),过点B作BC⊥x轴,垂足为C.
(1)求抛物线和直线的解析式;
(2)点P是x轴正半轴上的一动点,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N,设OP的长度为n.
①当点P在线段OC上(不与点O、C重合)时,试用含n的代数式表示线段PM的长度;
②连接CM、BN,探究是否存在点P,使以B、C、M、N为顶点的四边形为平行四边形?若存在,求此时点P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.(1)计算:(-$\frac{1}{2}$)0+(-$\frac{1}{3}$)-1×$\frac{2}{\sqrt{3}}$+$\sqrt{(\sqrt{3}-2)^{2}}$;
(2)解不等式:2$\sqrt{6}$x-5≥5x-4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算:$\sqrt{4}$$-{(π-3)^0}×2sin{30°}-{(-1)^{2015}}+{(\frac{1}{3})^{-2}}-|{-6}|$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在△ABC中,AB=AC=10cm,BD⊥AC于D,且BD=8cm.点M从点A出发,沿AC方向匀速运动,速度为2cm/s;同时直线PQ由点B出发沿BA方向匀速运动,速度为1cm/s,运动过程中始终保持PQ∥AC,直线PQ交AB于P,交BC于Q,连接PM,设运动时间为t(s)(0<t<5).
(1)当四边形PQCM是平行四边形时,求t的值;
(2)当t为何值时,△PQM是等腰三角形?
(3)以PM为直径作⊙E,在点P、Q整个运动过程中,是否存在这样的时刻t,使得⊙E与BC相切?若存在,请求出运动时间t的值;若不存在,请说明理.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,已知O是直线AC上一点,OB是一条射线,OD平分∠AOB,OE在∠BOC内,2∠BOE=∠EOC,∠DOE=70°,求∠EOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如果△ABC≌△ADC,AB=AD,∠B=70°,BC=3cm,那么∠D=70°,DC=3cm.

查看答案和解析>>

同步练习册答案