【题目】如图,在ABCD中,对角线AC,BD交于点O,点E,点F在BD上,且 BE=DF 连接AE并延长,交BC于点G,连接CF并延长,交AD于点H.
(1)求证:△AOE≌△COF;
(2)若AC平分∠HAG,求证:四边形AGCH是菱形.
【答案】(1)见解析;(2) 见解析.
【解析】
(1)先由四边形ABCD是平行四边形,得出OA=OC,OB=OD,则OE=OF,又∵∠AOE=∠COF,利用SAS即可证明△AOE≌△COF;
(2)先证明四边形AGCH是平行四边形,再证明CG=AG,即可证明四边形AGCH是菱形.
证明:(1)∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD.
∵BE=DF,∴OE=OF.
在△AOE与△COF中,
∴△AOE≌△COF(SAS).
(2)由(1)得△AOE≌△COF,
∴∠OAE=∠OCF,∴AE∥CF.
又∵AH∥CG,∴四边形AGCH是平行四边形.
∵AC平分∠HAG,∴∠HAC=∠GAC.
∵AH∥CG,∴∠HAC=∠GCA,
∴∠GAC=∠GCA,∴CG=AG,
∴□AGCH是菱形.
科目:初中数学 来源: 题型:
【题目】(1)问题发现
如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.
填空:线段AD,BE之间的关系为 .
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.
(3)解决问题
如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图 1,将一张矩形纸片 ABCD 沿着对角线 BD 向上折叠,顶点 C 落到点 E 处,BE交AD 于点 F.
(1)求证:△BDF 是等腰三角形;
(2)如图 2,过点 D 作 DG∥BE,交 BC 于点 G,连接 FG 交 BD 于点 O.
①判断四边形 BFDG 的形状,并说明理由;
②若 AD=AB+2,BD=10,求四边形 BFDG 的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把四张形状大小完全相同的小正方形卡片(如图1)不重叠地放在一个底面为长方形(长为mcm,宽为ncm)的盒子的底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分的周长和是( )
A. 4mcmB. 4ncmC. 2(m+n)cmD. 4(mn)cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察图形,解答问题:
(1)按下表已填写的形式填写表中的空格:
图① | 图② | 图③ | |
三个角上三个数的积 | 1×(﹣1)×2=﹣2 | (﹣3)×(﹣4)×(﹣5)=﹣60 | |
三个角上三个数的和 | 1+(﹣1)+2=2 | (﹣3)+(﹣4)+(﹣5)=﹣12 | |
积与和的商 | ﹣2÷2=﹣1, |
(2)请用你发现的规律求出图④中的数y和图⑤中的数x.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级两个班,各选派10名学生参加学校举行的“诗词大赛”预赛.参赛选手的成绩如下(单位:分)
九(1)班:88,91,92,93,93,93,94,98,99,100
九(2)班:89,93,93,93,95,96,96,96,98,99.
(1)九(2)班的平均分是 分;九(1)班的众数是 分;
(2)若从两个班成绩最高的5位同学中选2人参加市级比赛,则这两个人来自不同班级的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A(3,﹣2)在对称轴为直线x=2的抛物线y=x2+bx+c的图象上,其顶点为B.
(1)求顶点B的坐标;
(2)点C在对称轴上,若△ABC的面积为2,求点C的坐标;
(3)将抛物线向左或右平移,使得新抛物线的顶点落在y轴上,问原抛物线上是否存在点M,平移后的对应点为N,满足OM=ON?如果存在,求出点M,N的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.
(1)求证:AB=CF;
(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com