精英家教网 > 初中数学 > 题目详情

【题目】如图 1,将一张矩形纸片 ABCD 沿着对角线 BD 向上折叠,顶点 C 落到点 E 处,BEAD 于点 F.

1)求证:BDF 是等腰三角形;

2)如图 2,过点 D DGBE,交 BC 于点 G,连接 FG BD 于点 O

①判断四边形 BFDG 的形状,并说明理由;

②若 AD=AB+2BD=10,求四边形 BFDG 的面积.

【答案】1)证明见解析;(2)①四边形BFDG是菱形;理由见解析;②.

【解析】

1)根据折叠的性质可得∠DBC=∠DBE,根据矩形的性质可得∠DBC=∠ADB,等量代换可得∠DBE=∠ADB,问题得证;

2)①根据矩形的性质及第一问证得邻边相等可得四边形BFDG是菱形;

②在△ABD中根据勾股定理列一元二次方程求出AB,然后在直角△ABF中设DF=BFx,利用勾股定理构造方程求解,最后根据菱形面积公式计算即可.

解:(1)证明:如图1

根据折叠的性质可得:∠DBC=∠DBE

ADBC

∴∠DBC=∠ADB

∴∠DBE=∠ADB

DFBF

∴△BDF是等腰三角形;

2)①∵四边形ABCD是矩形,

ADBC

又∵DGBE

∴四边形BFDG是平行四边形,

DFBF

∴四边形BFDG是菱形;

②由勾股定理得:AB2+AD2=BD2,即AB2+(AB+2)2=100

解得:AB=6(负值已舍去),

AD=AB+2=8

DFBFx,则AFADDF8x

在直角△ABF中,AB2AF2BF2,即62+(8x2x2

解得x

S四边形 BFDG=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°0.2588,sin75°0.9659,tan75°3.732,1.732,1.414)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在等腰△ABC中,AB=AC=,BC=4,点DA出发以每秒个单位的速度向点B运动,同时点E从点B出发以每秒4个单位的速度向点C运动,在DE的右侧作∠DEF=∠B,交直线AC于点F,设运动的时间为t秒,则当△ADF是一个以AD为腰的等腰三角形时,t的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2016湖北省黄冈市)如图,已知点A1a)是反比例函数的图象上一点,直线与反比例函数的图象在第四象限的交点为点B

1)求直线AB的解析式;

2)动点Px0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.

【答案】1y=x4;(2P40).

【解析】试题分析:(1)先把A1a)代入反比例函数解析式求出a得到A点坐标,再解方程组,得B点坐标,然后利用待定系数法求AB的解析式;

2)直线ABx轴于点Q,如图,利用x轴上点的坐标特征得到Q点坐标,则PA﹣PB≤AB(当PAB共线时取等号),于是可判断当P点运动到Q点时,线段PA与线段PB之差达到最大,从而得到P点坐标.

试题解析:(1)把A1a)代入a=﹣3,则A1﹣3),解方程组: ,得: ,则B3﹣1),设直线AB的解析式为y=kx+b,把A1﹣3),B3﹣1)代入得: ,解得: ,所以直线AB的解析式为y=x﹣4

2)直线ABx轴于点Q,如图,当y=0时,x﹣4=0,解得x=4,则Q40),因为PA﹣PB≤AB(当PAB共线时取等号),所以当P点运动到Q点时,线段PA与线段PB之差达到最大,此时P点坐标为(40).

考点:反比例函数与一次函数的交点问题.

型】解答
束】
22

【题目】成都三圣乡花卉基地出售两种盆栽花卉:太阳花6/盆,绣球花10/盆.若一次购买的绣球花超过20盆时,超过20盆部分的绣球花价格打8折.

(1)若小张家花台绿化需用60盆两种盆栽花卉,小张爸爸给他460元钱去购买,问两种花卉各买了多少盆?

(2)分别写出两种花卉的付款金额y(元)关于购买量x(盆)的函数解析式;

(3)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少费用是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为使学生及时穿上合身的校服,现提前对该校八年级四班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为 6 个型号)

根据以上信息,解答下列问题(请写出每个空所需的求解步骤)

1)该班共有多少名学生?其中穿 175 型号校服的学生有多少?

2)在条形统计图中,请把空缺部分补充完整;(提醒:有两处需要补充)

3)在扇形统计图中,185 型校服所对应的扇形圆心角的大小是 度;

4)该班学生所穿校服型号的众数是 型,中位数是 型。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我省某旅游景点的旅客人数逐年增加,据旅游部门统计,2016年约为120万人次,预计2018年约为170万人次,设游客人数年平均增长率为x,则下列方程中正确的是(  )

A. 120(1+x)=170 B. 170(1﹣x)=120

C. 120(1+x)2=170 D. 120+120(1+x)+120(1+x)2=170

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx3a0)的顶点为E,该抛物线与x轴交于A10)、B30)两点,与y轴交于点C,直线y=x+1y轴交于点D

(1)求抛物线的解析式;

(2)证明:△DBO∽△EBC;

(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,对角线ACBD交于点O,点E,点FBD上,且 BEDF 连接AE并延长,交BC于点G,连接CF并延长,交AD于点H

(1)求证:△AOE≌△COF

(2)AC平分∠HAG,求证:四边形AGCH是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中∠C=90°BAC=30°AB=8,以2为边长的正方形DEFG的一边GD在直线AB上,且点D与点A重合,现将正方形DEFG沿A﹣B的方向以每秒1个单位的速度匀速运动,当点D与点B重合时停止,则在这个运动过程中,正方形DEFGABC的重合部分的面积S与运动时间t之间的函数关系图象大致是(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案