精英家教网 > 初中数学 > 题目详情
11.一个不透明的盒子中装有6个红球,若干个黄球和2个绿球,这些球除颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为$\frac{1}{3}$,则黄球的个数为4.

分析 设黄球有x个,根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,列方程求出x的值即可得.

解答 解:设黄球有x个,
根据题意,得:$\frac{x}{6+x+2}$=$\frac{1}{3}$,
解得:x=4,
经检验:x=4是原分式方程的解,
故答案为:4.

点评 此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.大于$\frac{9}{10}$的真分数有无数个.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉30-$\frac{t}{2}$千克.(用含t的代数式表示.)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知三个全等的等边三角形如图1所示放置,其中点B、C、E在同一直线上,
(1)写出两个不同类型的结论;
(2)连接BD,P为BD上的动点(D点除外),DP绕点D逆时针旋转60°到DQ,如图2,连接PC,QE,
①判断CP与QE的大小关系,并说明理由;
②若等边三角形的边长为2,连接AP,在BD上是否存在点P,使AP+CP+DP的值最小,并求最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.计算:${(-\frac{1}{2})}^{-1}$+$\root{3}{27}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.计算$\sqrt{36}$的结果为(  )
A.6B.-6C.18D.-18

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,过点B做射线BB1∥AC,动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C出发沿射线AC方向以每秒3个单位的速度运动,过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,连接DF,设运动的时间为t秒(t>0).
(1)当t为2时,AD=AB,此时DE的长度为2;
(2)当△DEF与△ACB全等时,求t的值;
(3)以DH所在直线为对称轴,线段AC经轴对称变换后的图形为A′C′.
①当t>$\frac{6}{5}$时,设△ADA′的面积为S,直接写出S关于t的函数关系式;
③当线段A′C′与射线BB1有公共点时,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想
         图1中,线段PM与PN的数量关系是PM=PN,位置关系是PM⊥PN;
(2)探究证明
       把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸
        把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.【再现】如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=$\frac{1}{2}$BC.(不需要证明)
【探究】如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH的形状,并加以证明.
【应用】在(1)【探究】的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是:AC=BD.(只添加一个条件)
(2)如图③,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,对角线AC,BD相交于点O.若AO=OC,四边形ABCD面积为5,则阴影部分图形的面积和为$\frac{5}{4}$.

查看答案和解析>>

同步练习册答案