精英家教网 > 初中数学 > 题目详情

【题目】下表是小安填写的数学实践活动报告的部分内容

测量铁塔顶端到地面的高度

测量目标示意图

相关数据

CD=20mɑ=45°β=52°

求铁塔的高度FE(结果精确到1)(参考数据:sin52°≈0.79 cos52°≈0.62tan52°≈1.28

【答案】91

【解析】

过点DDHEFH,由四边形CDHE是矩形,得到HE=CD=20mDH=CE,设DH=CE=x,根据∠GDH=45°,得到FH=DH=xm,利用∠ECF=52°tanECF= ,列得,求出x即可得到答案.

过点DDHEFH

EFCEDCCE

∴∠CDH=DHE=CEH=90°

∴四边形CDHE是矩形,

HE=CD=20mDH=CE

DH=CE=xm

RtDFH中,∠GDH=45°

FH=DH=xm

RtCEF中,∠ECF=52°tanECF= ,

x

EF=FH+EH=91().

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形中,延长线上的定点,边上的一个动点,连接,将射线绕点顺时针旋转,交射线于点,连接

小东根据学习函数的经验,对线段的长度之间的关系进行了探究.

下面是小东探究的过程,请补充完整:

1)对于点上的不同位置,画图、测量,得到了线段的长度的几组值,如下表:

位置1

位置2

位置3

位置4

位置5

位置6

位置7

位置8

位置9

0.00

0.53

1.00

1.69

2.17

2.96

3.46

3.79

4.00

0.00

1.00

1.74

2.49

2.69

2.21

1.14

0.00

1.00

4.12

3.61

3.16

2.52

2.09

1.44

1.14

1.02

1.00

的长度这三个量中,确定_____的长度是自变量,_____的长度和_____的长度都是这个自变量的函数;

2)在同一平面直角坐标系中,画出(1)中所确定的两个函数的图象;

3)结合画出的函数图象,解决问题:当时,的长度约为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,函数的图象经过点,作ACx轴于点C

1)求k的值;

2)直线AB图象经过点x轴于点.横、纵坐标都是整数的点叫做整点.线段ABACBC围成的区域(不含边界)为W

①直线AB经过时,直接写出区域W内的整点个数;

②若区域W内恰有1个整点,结合函数图象,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DE分别是△ABC的边ABAC的中点,HG是边BC上的点,且HG=BCSABC =12,则图中阴影部分的面积为( )

A.6B.4C.3D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,正方形中, 的中点,过点于点,过点垂直的延长线于点,交于点

1)求证:

2)如图2,连接,连接并延长交于点I

①求证:

②求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,为坐标原点.抛物线轴正半轴交于点,点的坐标为是该抛物线第一象限图像上的一点,三点均在某一个正方形的边上,且该正方形的任何一条边均与某条坐标轴平行,设点的横坐标为.若这个正方形的面积最小,则的取值范围是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:在平面直角坐标系中,为坐标原点,的边平行于轴.若的三个顶点都在二次函数的图像上,则称为该二次函数图像的“伴随三角形”.为抛物的“伴随三角形”.

1)若点是抛物线与轴的交点,求点的坐标.

2)若点在该抛物线的对称轴上,且到边的距离为2,求的面积.

3)设两点的坐标分别为,比较的大小,并求的取值范围.

(4)是抛物线的“伴随三角形”,点在点的左侧,且,点的横坐标是点的横坐标的2倍,设该抛物线在上最高点的纵坐标为,当时,直接写出的取值范围和面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某数学老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的初三(1)班、(2)班进行了检测,如图表示从两班各随机抽取的10名学生的得分情况.

1)利用图中提供的信息,补全下表:

班级

平均数/

中位数/

众数/

方差/

初三(1)班

24

24

________

5.4

初三(2)班

24

_________

21

________

2)哪个班的学生纠错的得分更稳定?若把24分以上(24)记为优秀,两班各40名学生,请估计两班各有多少名学生成绩优秀;

3)现从两个班抽取了数学成绩最好的甲、乙、丙、丁四位同学,并随机分成两组进行数学竞赛,求恰好选中甲、乙一组的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数的部分图象如图所示,图象过点,对称轴为直线,下列结论:①;②;③一元二次方程的解是;④当时,,其中正确的结论有__________

查看答案和解析>>

同步练习册答案