【题目】某数学老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的初三(1)班、(2)班进行了检测,如图表示从两班各随机抽取的10名学生的得分情况.
(1)利用图中提供的信息,补全下表:
班级 | 平均数/分 | 中位数/分 | 众数/分 | 方差/分 |
初三(1)班 | 24 | 24 | ________ | 5.4 |
初三(2)班 | 24 | _________ | 21 | ________ |
(2)哪个班的学生纠错的得分更稳定?若把24分以上(含24分)记为“优秀”,两班各40名学生,请估计两班各有多少名学生成绩优秀;
(3)现从两个班抽取了数学成绩最好的甲、乙、丙、丁四位同学,并随机分成两组进行数学竞赛,求恰好选中甲、乙一组的概率.
【答案】(1)24,24,;(2)初三(1)班纠错的得分更稳定;两班各有28、24人成绩优秀;(3).
【解析】
(1)根据方差、中位数和众数的定义进行解答即可;
(2)根据方差判断稳定性,找到样本中24分和24分以上人数所占的比值,用样本平均数估计总体平均数;
(3)通过画树状图或列表即可求出概率.
解:(1)初三(1)班有4名学生24分,最多,故众数为24,
把初三(2)班的成绩从小到大排列,则处于中间位置的数为24和24,故中位数为24分,
初三(2)班成绩的方差为
;
将数据填入表中为
班级 | 平均数/分 | 中位数/分 | 众数/分 | 方差/分 |
初三(1)班 | 24 | 24 | 24 | 5.4 |
初三(2)班 | 24 | 24 | 21 | 19.8 |
(2)∵5.4<19.8,初三(1)班成绩的方差小,
∴初三(1)班纠错的得分更稳定;
初三(1)班成绩优秀人数为(人),
初三(2)班成绩优秀人数为(人);
(3)根据题意画树状图如下:
∵共有12种等可能的结果,甲、乙分在同一组的有2种情况,
∴甲、乙分在同一组的概率为.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,∠ACB=90°,BC=3,AC=4,小红按如下步骤作图:
①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;
②连接MN,分别交AB、AC于点D、O;
③过C作CE∥AB交MN于点E,连接AE、CD.
则四边形ADCE的周长为( )
A. 10 B. 20 C. 12 D. 24
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表是小安填写的数学实践活动报告的部分内容
题 目 | 测量铁塔顶端到地面的高度 | |
测量目标示意图 | ||
相关数据 | CD=20m,ɑ=45°,β=52° |
求铁塔的高度FE(结果精确到1米)(参考数据:sin52°≈0.79, cos52°≈0.62,tan52°≈1.28)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两个工厂同时加工一批机器零件.甲工厂先加工了两天后停止加工,维修设备,当维修完设备时,甲乙两厂加工的零件数相等,甲工厂再以原来的工作效率继续加工这批零件.甲乙两厂加工零件的数量(件),(件)与加工件的时间(天)的函数图象如图所示,
(1)乙工厂每天加工零件的数为_____件;
(2)甲工厂维修设备的时间是多少天?
(3)求甲维修设备后加工零件的数量(件)与加工零件的时间(天)的函数关系式,并写出自变量的取值范围
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,抛物线与轴交于、两点,与直线交于、两点,直线与轴交于点.
(1)求直线的解析式:
(2)若点在线段上以每秒1个单位长度的速度从点向点运动(不与点、重合),同时,点在射线上以每秒2个单位长度的速度从点向点方向运动,设运动的时间为秒,的面积为,求关于的函数关系式,并求取何值时,最大?最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着新冠肺炎的爆发,市场对口罩的需求量急剧增大.某口罩生产商自二月份以来,--直积极恢复产能,每日口罩生产量(百万个)与天数且为整数)的函数关系图象如图所示,而该生产商对口供应市场对口罩的需求量<(百万个)与天数呈抛物线型,第天市场口罩缺口(需求量与供应量差)就达到(百万个),之后若干天,市场口罩需求量不断上升,在第天需求量达到最高峰(百万个).
求出与的函数解析式;
当市场供应量不小于需求量时,市民买口罩才无需提前预约,那么在整个二月份,市民无需预约即可购买口罩的天数共有多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图点A,E,F,C在同一直线上,AE=EF=FC,过E,F分别作DE⊥AC,BF⊥AC,连结AB,CD,BD,BD交AC于点G,若AB=CD.
(1)求证:△ABF≌△CDE.
(2)若AE=ED=2,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形纸片ABCD中,已知AD=8,AB=6,E是边BC上的点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在歌唱比赛中,一位歌手分别转动如下的两个转盘(每个转盘都被分成3等份)一次,根据指针指向的歌曲名演唱两首曲目.
(1)转动转盘①时,该转盘指针指向歌曲“3”的概率是 ;
(2)若允许该歌手替换他最不擅长的歌曲“3”,即指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”, 请用树形图或列表法中的一种,求他演唱歌曲“1”和“4”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com