精英家教网 > 初中数学 > 题目详情

【题目】元旦游园活动中,小文,小美,小红三位同学正在搬各自的椅子准备进行抢凳子游戏,看见李老师来了,小文立即邀请李老师参加,游戏规则如下:将三位同学的椅子背靠背放在教室中央,四人围着椅子绕圈行走,在行走过程中裁判员随机喊停,听到后四人迅速抢坐在一张椅子上,没有抢坐到椅子的人淘汰,不能进入下一轮游戏.

1)下列事件是必然事件的是 .

A.李老师被淘汰 B.小文抢坐到自己带来的椅子

C.小红抢坐到小亮带来的椅子 D.有两位同学可以进入下一轮游戏

2)如果李老师没有抢坐到任何一张椅子,三位同学都抢坐到了椅子但都没有抢坐到自己带来的椅子(记为事件),求出事件的概率,请用树状图法或列表法加以说明.

【答案】1D;(2)图见解析,

【解析】

1)根据随机事件、必然事件和不可能事件的定义求解可得;

2)根据题意画出树状图列出所有等可能结果,再根据概率公式求解可得.

解:(1、王老师被淘汰是随机事件;、小明抢坐到自己带来的椅子是随机事件;

、小红抢坐到小亮带来的椅子是随机事件;、共有3张椅子,四人中只有1位老师,所以一定有2位同学能进入下一轮游戏;故是必然事件.

故选:

2)解:设小文,小美,小红三位同学带来的椅子依次排列为abc

画树状图如下

由树状图可知,所有等可能结果共有6种,其中第4种、第5种结果符合题意,

PA.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b与反比例函数y=x0)的图象交于Am6),Bn3)两点.

1)求一次函数的解析式;

2)根据图象直接写出kx+b0x的取值范围.

3)若Mx轴上一点,且MOBAOB的面积相等,求M点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线yxy轴分别交于AC两点,以AC为对角线作第一个矩形ABCO,对角线交点为A1,再以CA1为对角线作第二个矩形A1B1CO1,对角线交点为A2,同法作第三个矩形A2B2CO2对角线交点为A3以此类推,则第2019个矩形对角线交点A2019的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在△ABC中,ABAC,∠BACα,直线l经过点A(不经过点B或点C),点C关于直线l的对称点为点D,连接BDCD.

(1)如图1

①求证:点BCD在以点A为圆心,AB为半径的圆上.

②直接写出∠BDC的度数(用含α的式子表示)______.

(2)如图2,当α60°时,过点DBD的垂线与直线l交于点E,求证:AEBD.

(3)如图3,当α90°时,记直线lCD的交点为F,连接BF.将直线l绕点A旋转,当线段BF的长取得最大值时,直接写出tanFBC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】目前微信”、“支付宝”、“共享单车网购给我们的生活带来了很多便利,初二数学小组在校内对你最认可的四大新生事物进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.

(1)根据图中信息求出m=   ,n=   

(2)请你帮助他们将这两个统计图补全;

(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可微信这一新生事物?

(4)已知A、B两位同学都最认可微信”,C同学最认可支付宝”D同学最认可网购从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=PBD.延长PD交圆的切线BE于点E

(1)证明:直线PD是⊙O的切线.

(2)如果∠BED=60°,,求PA的长.

(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)(  )

A. 21.7 B. 22.4 C. 27.4 D. 28.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为建设最美恩施,一旅游投资公司拟定在某景区用茶花和月季打造一片人工花海,经市场调查,购买株茶花与株月季的费用相同,购买株茶花与株月季共需.

1)求茶花和月季的销售单价;

2)该景区至少需要茶花月季共株,要求茶花比月季多株,但订购两种花的总费用不超过元,该旅游投资公司怎样购买所需总费用最低,最低费用是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知RtABC,∠BAC90°BC5AC2,以A为圆心、AB为半径画圆,与边BC交于另一点D

1)求BD的长;

2)连接AD,求∠DAC的正弦值.

查看答案和解析>>

同步练习册答案