精英家教网 > 初中数学 > 题目详情
4.如图,在△ABC中,AB=3,BC=5,AC=6,请解答下列问题:
(1)尺规作图:将△ABC补成一个?ABCD.(要求:不写作法,保留作图痕迹)
(2)求(1)中?ABCD的面积.

分析 (1)先作AC的垂直平分线得到AC的中点O,再延长BO到点D,使OD=OB,则四边形ABCD为平行四边形;
(2)作AH⊥BC于H,如图,利用勾股定理得到AH2=32-BH2,AH2=62-(5+BH)2,则可求出BH和AH,然后根据平行四边形的面积公式求解.

解答 解:(1)如图,平行四边形ABCD为所作;

(2)作AH⊥BC于H,如图,
在Rt△ABH中,AH2=AB2-BH2=32-BH2
在Rt△ACH中,AH2=AC2-CH2=62-(5+BH)2
则32-BH2=62-(5+BH)2,解得BH=$\frac{1}{5}$,
所以AH=$\sqrt{{3}^{2}-(\frac{1}{5})^{2}}$=$\frac{4\sqrt{14}}{5}$,
所以?ABCD的面积=$\frac{4\sqrt{14}}{5}$×5=4$\sqrt{14}$.

点评 本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

14.下列各式中最简二次根式为(  )
A.$\sqrt{3}$B.$\sqrt{{x}^{2}}$C.$\sqrt{0.7}$D.$\sqrt{\frac{1}{3}}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,AC是⊙O的直径,∠A=30°,AB交⊙O于D,CD=1,
(1)求AC的长;
(2)若BC=$\frac{2\sqrt{3}}{3}$,求证:BC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.(1)解不等式:3x<2+x.
(2)求代数式$\frac{{x}^{2}+2x+1}{x+1}$÷$\frac{{x}^{2}-1}{x-1}$-$\frac{x}{x+2}$的值,其中x=$\sqrt{2}$-2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.我们知道,一元二次方程x2=-1没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数:“i“,使其满足i2=-1(即方程x2=-1有一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i1=i,i2=-1,i3=i2•i=(-1)•i=-i,i4=(i22=(-1)2=1.从而对任意正整数n,我们可得到i4n+1=i4n•i=(i4n•i=i,同理可得i4n+2=-1,i4n+3=-i,i4n=1,那么,i+i2+i3+i4+…+i2012+i2013的值为(  )
A.0B.1C.-1D.i

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,点A为双曲线y=$\frac{k}{x}$(k>0)上一点,AC⊥x轴于C,过C的直线l交双曲线于B,∠BCO=30°,BC=2$\sqrt{3}$,点A横坐标为-1.
(1)求k的值;
(2)连接AB,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.“世界那么大,我想去看看”一句话红遍网络,随着国际货币基金组织正式宣布人民币2016年10月1日加入SDR(特别提款权),以后出国看世界更加方便.为了解某区6000名初中生对“人民币加入SDR”知晓的情况,某校数学兴趣小组随机抽取区内部分初中生进行问卷调查,将问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不了解”四个等级,并将调查结果整理分析,得到下列图表:
某区抽取学生对“人民币加入SDR”知晓情况频数分布表

(1)本次问卷调查抽取的学生共有100人,其中“不了解”的学生有20人;
(2)在扇形统计图中,学生对“人民币加入SDR”基本了解的区域的圆心角为72°;
(3)根据抽样的结果,估计该区6000名初中生对“人民币加入SDR”了解的有多少人(了解是指“非常了解”、“比较了解”和“基本了解”)?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.下列二次根式中属于最简二次根式的是(  )
A.$\sqrt{12}$B.$\sqrt{\frac{a}{b}}$C.$\sqrt{{a}^{2}+1}$D.$\sqrt{4a+4}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.在3.14、$\sqrt{12}$、$\frac{22}{7}$、-$\sqrt{2}$、$\root{3}{27}$、$\frac{π}{3}$、0.2020020002这六个数中,无理数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案