【题目】某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆两种型号客车作为交通工具.
下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:
型号 | 载客量 | 租金单价 |
30人/辆 | 380元/辆 | |
20人/辆 | 280元/辆 |
注:载客量指的是每辆客车最多可载该校师生的人数.设学校租用型号客车辆,租车总费用为元.
(1)求与的函数解析式,请直接写出的取值范围;
(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?
【答案】(1) 21≤x≤62且x为整数;(2)共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.
【解析】
(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式,再根据A
B两种车至少要能坐1441人即可得取x的取值范围;
(2)由总费用不超过21940元可得关于x的不等式,解不等式后再利用函数的性质即可解决问题.
(1)由题意得y=380x+280(62-x)=100x+17360,
∵30x+20(62-x)≥1441,
∴x≥20.1,∴21≤x≤62且x为整数;
(2)由题意得100x+17360≤21940,
解得x≤45.8,∴21≤x≤45且x为整数,
∴共有25种租车方案,
∵k=100>0,∴y随x的增大而增大,
当x=21时,y有最小值, y最小=100×21+17360=19460,
故共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.
科目:初中数学 来源: 题型:
【题目】已知:如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.
求证:(1)△AFD≌△CEB.(2)四边形ABCD是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数的图象经过该二次函数图象上点及点B.
(1)求B点坐标与二次函数的解析式;
(2)根据图象,写出满足的x的取值范围.
(3)求线段的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,,以为直径的⊙O与交于点,,垂足为,的延长线与的延长线交于点.
(1)求证:是⊙O的切线.
(2)若⊙O的半径为4,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线的对称轴为,与轴的一个交点在和之间,其部分图像如图所示,则下列结论:①点,,是该抛物线上的点,则;②;③(为任意实数).其中正确结论的个数是( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程(a﹣1)x2+2x+a﹣1=0.
(1)若该方程有一根为2,求a的值及方程的另一根;
(2)当a为何值时,方程仅有一个根?求出此时a的值及方程的根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.
请根据图中信息解答下列问题:
(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;
(2)求恒温系统设定的恒定温度;
(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知矩形ABCD中,,,现有两只蚂蚁P和Q同时分别从A、B出发,沿方向前进,蚂蚁P每秒走1cm,蚂蚁Q每秒走2cm.问:
(1)蚂蚁出发后△PBQ第一次是等腰三角形需要爬行几秒?
(2)P、Q两只蚂蚁最快爬行几秒后,直线PQ与边AB平行?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com