精英家教网 > 初中数学 > 题目详情
10.已知:如图,AB是⊙O的直径,弦CD⊥AB,M为AC上一点,AM的延长线交DC的延长线于F,求证:∠AMD=∠FMC.

分析 连接AD,根据垂径定理求出弧AD=弧AC,根据圆周角定理求出∠AMD=∠ADC,根据四点共圆求出∠FMC=∠ADC,即可推出答案.

解答 证明:连接AD,

∵⊙O的直径AB和弦CD,且AB⊥CD,
∴弧AC=弧AD,
∴∠AMD=∠ADC,
∵A、M、C、D四点共圆,
∴∠FMC=∠ADC(圆内接四边形的一个外角等于它的内对角),
∴∠AMD=∠FMC

点评 本题考查了垂径定理,圆周角定理,圆内接四边形的性质等知识点的应用,关键是作辅助线得出∠ADC=∠AMC,通过做此题培养了学生运用定理进行推理的能力.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.如图所示的长方形和正方形硬纸片,如果要用这些纸片若干个拼一个长为(3a+2b)宽为(a+b)的长方形,Ⅰ型、Ⅱ型、Ⅲ型纸片所需块数分别为(  )
A.3,5,2B.3,2,2C.2,3,5D.1,2,5

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,⊙O中,弦AB=2,点C在⊙O上,∠ACB=45°,则⊙O的半径等于(  )
A.$\sqrt{2}$B.1C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,直线y=$\frac{1}{2}$x+1交两坐标轴于A、B两点,P从O点出发.
(1)沿x正半轴方向移动,速度为每秒1个单位,设移动的时间为t,求S△ABP与时间t的函数关系式.
(2)沿x负半轴方向移动,速度为每秒1个单位,设移动的时间为t,求S△ABP与时间t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知:在Rt△ABD中,∠ABD=90°,以直角边AB为直径作圆O交AD于C,取线段BD的中点E,连接CE交AB的延长线于P.
(1)求证:CP是⊙O的切线;
(2)点M是弧$\widehat{AB}$的中点,CM交AB于点N,若AB=4,求MN•MC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在Rt△ABC中,AD为斜边BC上的高,∠ABC的平分线BE交AC于E,交AD于F.
求证:$\frac{AB}{BC}$=$\frac{AF}{CE}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知一次函数y=kx+3,当x=1时,y=4.
(1)求这个一次函数的关系式;
(2)求关于x的方程kx+3=6的解,并求当y≤6时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知三角形ABC的面积为96平方厘米,BC=3DC,FD=2AF,求三角形AEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图△ABC中,tan∠C=$\frac{1}{2}$,DE⊥AC,若CE=5,DE=1,且△BEC的面积是△ADE面积的10倍,则BE的长度是$\sqrt{5}$.

查看答案和解析>>

同步练习册答案