精英家教网 > 初中数学 > 题目详情

【题目】小明同学用配方法解方程x2+axb2时,方程的两边加上_____,据欧几里得的《原本》记载,形如x2+axb2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BCACb,再在斜边AB上截取BD.则该方程的一个正根是线段_____的长.

【答案】 AD

【解析】

根据配方法求解即可AD=x,根据勾股定理可得x+2b2+(2整理可得x2+axb2由此即可解答

用配方法解方程x2+axb2时,方程的两边加上

欧几里得的《原本》记载,形如x2+axb2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BCACb,再在斜边AB上截取BD

ADx,根据勾股定理得:(x+2b2+(2

整理得:x2+axb2

则该方程的一个正根是AD的长,

故答案为:AD

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是

A. BC=AC B. CFBF C. BD=DF D. AC=BF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,EAB中点,EF∥DCBC于点F,EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,2).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AD>AB,点PCD边上的任意一点(不含C,D两端点),过点PPFBC,交对角线BD于点F.

(1)如图1,将PDF沿对角线BD翻折得到QDF,QFAD于点E.求证:DEF是等腰三角形;

(2)如图2,将PDF绕点D逆时针方向旋转得到P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).

①若0°<α<BDC,即DF'在∠BDC的内部时,求证:DP'C∽△DF'B.

②如图3,若点PCD的中点,DF'B能否为直角三角形?如果能,试求出此时tanDBF'的值,如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(B的对应点是点B′,点C的对应点是点C′),连接CC′,若∠CC′B′=33°,则∠B的大小是(  )

A. 33° B. 45° C. 57° D. 78°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的图象的顶点为A(2,-2),并且经过B(1,0),C(3,0),求这条抛物线的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九年级举行毕业典礼,需要从九年(1)班的2名男生1名女生(男生用A1表示,女生用B1表示)和九年(2)班的1名男生1名女生(男生用A2表示,女生用B2表示)共5人中随机选出2名主持人.

(1)用树状图或列表法列出所有可能情形;

(2)2名主持人来自不同班级的概率;

(3)2名主持人恰好11女的概率.

查看答案和解析>>

同步练习册答案