精英家教网 > 初中数学 > 题目详情
2.如图,已知?ABCD的对角线交于O点,M为OD的中点,过M的直线分别交AD、CD于P、Q.交BA、BC的延长线于E、F.求证:PE+QF=2PQ.

分析 先由MP∥OA,DM=MO,得出DP=PA.再由平行四边形的性质得出∠EAP=∠QDP,∠AEP=∠DQP,然后利用AAS证明△APE≌△DPQ,得出PE=PQ.同理,QF=PQ,即可得出PE+QF=2PQ.

解答 证明:∵MP∥OA,DM=MO,
∴DP=PA.
在?ABCD中,∵AB∥CD,
∴∠EAP=∠QDP,∠AEP=∠DQP.
在△APE与△DPQ中,$\left\{\begin{array}{l}{∠EAP=∠QDP}&{\;}\\{∠AEP=∠DQP}&{\;}\\{PA=PD}&{\;}\end{array}\right.$,
∴△APE≌△DPQ(AAS),
∴PE=PQ.
同理,QF=PQ,
∴PE+QF=2PQ.

点评 本题考查了平行四边形的性质,全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为45°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,一次函数y=-x+4的图象与反比例函数y=$\frac{k}{x}$(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.
(1)求反比例函数的表达式;
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;
(3)求△PAB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.若x是整数,且满足不等式组$\left\{\begin{array}{l}{x-2>0}\\{4x-5<9}\end{array}\right.$,则x=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.先让我们一起来学习方程m2+1=$\sqrt{{m}^{2}+3}$的解法:
解:令m2=a,则a+1=$\sqrt{a+3}$,方程两边平方可得,(a+1)2=a+3
解得a1=1,a2=-2,∵m2≥0∴m2=1∴m=±1
点评:类似的方程可以用“整体换元”的思想解决.
不妨一试:
如图1,在平面直角坐标系xOy中,抛物线y=ax2+1经过点A(4,-3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.

(1)求抛物线的解析式;
(2)①当P点运动到A点处时,通过计算发现:PO=PH(填“>”、“<”或“=”);
②当P点在抛物线上运动时,猜想PO与PH有何数量关系,并证明你的猜想;
(3)当△PHO为等边三角形时,求点P坐标;
(4)如图2,设点C(1,-2),问是否存在点P,使得以P、O、H为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,已知DO⊥CO于点O若∠1:∠BOC=1:5,OE平分∠BOC.
(1)求∠1的度数?
(2)求∠2的度数?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.阅读材料:
材料  已知实数m、n满足m2-m-1=0、n2-n-1=0.且m≠n,求$\frac{n}{m}$+$\frac{m}{n}$的值.
 解:由题知m、n是方程x2-x-1=0的两个不相等的实数根.根据材料1得m+n=1,mn=-1
∴$\frac{n}{m}$+$\frac{m}{n}$=$\frac{{m}^{2}+{n}^{2}}{mn}$=$\frac{(m+n)^{2}-2mn}{mn}$=$\frac{1+2}{-1}$=-3
根据上述材料解决下面问题:
(1)已知实数m、n满足3m2-3m-1=0、3n2-3n-1=0,且m≠n,求m2n+mn2的值.
(2)已知实数p、q满足p2=7p-2、2q2=7q-1,且p≠2q,求p2+4q2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.解方程:
(1)x2-6x+8=0       
(2)(x-5)2=2(x-5)-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.某景区的三个景点A,B,C在同一线路上,甲,乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C,甲,乙两人离开景点A后的路程S(米)关于时间t(分钟)的函数图象如图所示.根据信息回答下列问题:
(1)景点C距离A5400米,景点B距离景点A3000米,甲的速度是60米/分钟;
(2)乙出发后多长时间与甲相遇?
(3)要使甲到达景点C时,乙与C的路程不超过400米,则乙从景点B步行到景点C的速度至少为多少?(结果精确到0.1米/分钟)

查看答案和解析>>

同步练习册答案