精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在△ABC中,DAC的中点,E是线段BC延长线上一点,过点ABE的平行线与线段ED的延长线交于点F,连接AECF

1)求证:AFCE

2)若ACEF,试判断四边形AFCE是什么样的四边形,并证明你的结论.

【答案】1)详见解析;(2)四边形AFCE是矩形,证明详见解析.

【解析】

1)可通过全等三角形来证明简单的线段相等.△ADF和△CDE中,已知了ADCD,∠ADF=∠CDEAFBE,因此不难得出两三角形全等,进而可得出AFCE

2)需先证明四边形AFCE是平行四边形,那么对角线相等的平行四边形是矩形.

1)证明:在△ADF和△CDE中,

AFBE

∴∠FAD=∠ECD

又∵DAC的中点,

ADCD

∵∠ADF=∠CDE

∴△ADF≌△CDE

AFCE

2)解:若ACEF,则四边形AFCE是矩形.

证明:由(1)知:AFCEAFCE

∴四边形AFCE是平行四边形.

又∵ACEF

∴平行四边形AFCE是矩形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将二次函数y (x2)21的图像沿y轴向上平移得到一条新的二次函数图像,其中A(1m)B(4n)平移后对应点分别是A′B′,若曲线AB所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于点G,BG=4,则△EFC的周长为( )

A. 11 B. 10 C. 9 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

(1)这次活动共调查了   人;在扇形统计图中,表示支付宝支付的扇形圆心角的度数为   

(2)将条形统计图补充完整.观察此图,支付方式的众数   ”;

(3)在一次购物中,小明和小亮都想从微信”、“支付宝”、“银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图所示的一张矩形纸片 将纸片折叠一次,使点AC重合,再展开, 折痕EFAD边于E,交BC边于F,分别连结AFCE

1)求证:四边形AFCE是菱形;

2)在线段AC上是否存在一点P,使得?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形中,,点边的中点,点边上一动点(不与点重合),延长交射线于点,连拉.

1)求证:四边形是平行四边形。

2)填空:

的值为_______________时,四边形是矩形;

的值为_______________时,四边形是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C90°BC16 cmAC12 cm,点P从点B出发,沿BC2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点PQ分别从点BC同时出发,设运动时间为ts,当t__________时,CPQCBA相似.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,动点P从点A开始沿边ABB的速度移动(不与点B重合),动点Q从点B开始沿边BCC的速度移动(不与点C重合),如果PQ分别从AB同时出发,设运动的时间为,四边形APQC的面积为

1)求yx之间的函数关系式;写出自变量x的取值范围;

2)当四边形APQC的面积等于时,求x的值;

3)四边形APQC的面积能否等于?若能,求出运动的时间,若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,抛物线y=a(x2+2x-3)(a≠0)x轴交于点A和点B,与y轴交于点C,且OC=OB.

(1)直接写出点B的坐标是( ),并求抛物线的解析式;

(2)设点D是抛物线的顶点,抛物线的对称轴是直线l,连接BD,线段OC上的点E关于直线l的对称点E'恰好在线段BD上,求点E的坐标;

(3)若点F为抛物线第二象限图象上的一个动点,连接BFCF,当△BCF的面积是△ABC面积的一半时,求此时点F的坐标.

查看答案和解析>>

同步练习册答案