【题目】已知:如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE,CF.
(1)求证:AF=CE;
(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论.
【答案】(1)详见解析;(2)四边形AFCE是矩形,证明详见解析.
【解析】
(1)可通过全等三角形来证明简单的线段相等.△ADF和△CDE中,已知了AD=CD,∠ADF=∠CDE,AF∥BE,因此不难得出两三角形全等,进而可得出AF=CE.
(2)需先证明四边形AFCE是平行四边形,那么对角线相等的平行四边形是矩形.
(1)证明:在△ADF和△CDE中,
∵AF∥BE,
∴∠FAD=∠ECD.
又∵D是AC的中点,
∴AD=CD.
∵∠ADF=∠CDE,
∴△ADF≌△CDE.
∴AF=CE.
(2)解:若AC=EF,则四边形AFCE是矩形.
证明:由(1)知:AF=CE,AF∥CE,
∴四边形AFCE是平行四边形.
又∵AC=EF,
∴平行四边形AFCE是矩形.
科目:初中数学 来源: 题型:
【题目】如图,将二次函数y= (x-2)2+1的图像沿y轴向上平移得到一条新的二次函数图像,其中A(1,m),B(4,n)平移后对应点分别是A′、B′,若曲线AB所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于点G,BG=4,则△EFC的周长为( )
A. 11 B. 10 C. 9 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
(1)这次活动共调查了 人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为 ;
(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“ ”;
(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图所示的一张矩形纸片, 将纸片折叠一次,使点A与C重合,再展开, 折痕EF交AD边于E,交BC边于F,分别连结AF和CE.
(1)求证:四边形AFCE是菱形;
(2)在线段AC上是否存在一点P,使得?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形中,,点是边的中点,点是边上一动点(不与点重合),延长交射线于点,连拉.
(1)求证:四边形是平行四边形。
(2)填空:
①当的值为_______________时,四边形是矩形;
②当的值为_______________时,四边形是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=__________时,△CPQ与△CBA相似.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,,动点P从点A开始沿边AB向B以的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以的速度移动(不与点C重合),如果P、Q分别从A、B同时出发,设运动的时间为,四边形APQC的面积为.
(1)求y与x之间的函数关系式;写出自变量x的取值范围;
(2)当四边形APQC的面积等于时,求x的值;
(3)四边形APQC的面积能否等于?若能,求出运动的时间,若不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,抛物线y=a(x2+2x-3)(a≠0)与x轴交于点A和点B,与y轴交于点C,且OC=OB.
(1)直接写出点B的坐标是( , ),并求抛物线的解析式;
(2)设点D是抛物线的顶点,抛物线的对称轴是直线l,连接BD,线段OC上的点E关于直线l的对称点E'恰好在线段BD上,求点E的坐标;
(3)若点F为抛物线第二象限图象上的一个动点,连接BF,CF,当△BCF的面积是△ABC面积的一半时,求此时点F的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com