精英家教网 > 初中数学 > 题目详情

【题目】如图,点E,F在函数y= 的图象上,直线EF分别与x轴、y轴交于点A、B,且BE:BF=1:3,则△EOF的面积是

【答案】
【解析】解:作EP⊥y轴于P,EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,如图所示:

∵EP⊥y轴,FH⊥y轴,
∴EP//FH,
∴△BPE∽△BHF,
= ,即HF=3PE,
设E点坐标为(t, ),则F点的坐标为(3t, ),
∵SOEF+SOFD=SOEC+S梯形ECDF
而SOFD=SOEC= ×2=1,
∴SOEF=S梯形ECDF= + )(3t﹣t)=
所以答案是:
【考点精析】关于本题考查的比例系数k的几何意义,需要了解几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】有甲、乙两个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm、7cm、9cm;乙盒子中装有4张卡片,卡片上分别写着2cm、4cm、6cm、8cm;盒子外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从甲、乙两个盒子中各取出一张卡片,与盒子外的卡片放在一起,用卡片上标明的数量分别作为一条线段的长度.
(1)请用树状图或列表的方法求这三条线段能组成三角形的概率;
(2)求这三条线段能组成直角三角形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26, ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,该多边形各边上的格点个数之和为m,内部的格点个数为n,试探究S与m、n之间的关系式.

(1)根据图中提供的信息填表:

格点多边形各边上的
格点的个数

格点边多边形内部的
格点个数

格点多边形的面积

多边形1

4

1

2

多边形2

5

2

多边形3

6

3

5

多边形4

4

一般格点多边形

m

n

S

则S=(用含m、n的代数式表示)
(2)对正三角形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,如图1、2是该正三角形格点中的两个多边形:设格点多边形的面积为S,该多边形各边上的格点个数之和为m,内部的格点个数为n,试探究S与m、n之间的关系式.则S与m、n之间的关系为S=(用含m、n的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1计算:

(2)解不等式组

请结合题意填空,完成本题的解答:

解不等式(1),______________.

解不等式(2),_______________.

把不等式(1)(2)的解集在数轴上表示出来

∴原不等式组的解集为_________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AE平分∠CADAEBCO为△ABC内一点,∠OBC=∠OCB.求证:∠ABO=∠ACO.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A, D1,D三点的坐标分别是(0,4),(03),(02.

(1)对称中心的坐标;

(2)写出顶点B, C, B1 , C1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边的正方形EFGH的周长为(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线直线,垂足为如图放置,过点交直线于点,在内取一点,连接

1)若,则_______

2)若,则_______°.(用含的代数式表示)

查看答案和解析>>

同步练习册答案