【题目】(1计算:;
(2)解不等式组
请结合题意填空,完成本题的解答:
解不等式(1),得______________.
解不等式(2),得_______________.
把不等式(1)和(2)的解集在数轴上表示出来
∴原不等式组的解集为_________________.
科目:初中数学 来源: 题型:
【题目】如图是由九个等边三角形组成的一个六边形,当最小的等边三角形边长为2 cm时,这个六边形的周长为
A. 30cm B. 40cm C. 50cm D. 60cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】推理填空:
如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),且∠1=∠4( )
∴∠2=∠4 (等量代换)
∴CE∥BF ( )
∴∠ =∠3( )
又∵∠B=∠C(已知),∴∠3=∠B(等量代换)
∴AB∥CD ( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,四边形OABC是菱形,点C在x轴上,AB交y轴于点H,AC交y轴于点M.已知点A(-3,4).
(1)求AO的长;
(2)求直线AC的解析式和点M的坐标;
(3)如图2,点P从点A出发,以每秒2个单位的速度沿折线A-B-C运动,到达点C终止.设点P的运动时间为t秒,△PMB的面积为S.
①求S与t的函数关系式;
②求S的最大值.
图1 图2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm.直线PE从B点出发,以2cm/s的速度向点A方向运动,并始终与BC平行,与AC交于点E.同时,点F从C点出发,以1cm/s的速度沿CB向点B运动,设运动时间为t (s)(0<t<5).
(1)当t为何值时,四边形PFCE是矩形?
(2)设△PEF的面积为S(cm2),求S与t的函数关系式;
(3)是否存在某一时刻t,使△PEF的面积是△ABC面积的 ?若存在,求出t的值;若不存在,请说明理由.
(4)连接BE,是否存在某一时刻t,使PF经过BE的中点?若存在,求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB∥CD,EF交AB于E,交CD于F,∠AEF=68°,FG平分∠EFD,KF⊥FG,求∠KFC的度数.
解:∵AB∥CD(已知)
∴∠EFD=∠AEF( )
∵∠AEF=68°(已知)
∴∠EFD=∠AEF=68°( )
∵FG平分∠EFD(已知)
所以∠EFG=∠GFD=∠EFD=34°( )
又因为KF⊥FG( )
所以∠KFG=90°( )
所以∠KFC=180°-∠GFD-∠KFG= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,对角线AC的垂直平分线分别交AD,BC于点E,F,连接CE,若△CED的周长为6,则ABCD的周长为( )
A.6
B.12
C.18
D.24
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,如图1,在平面直角坐标系中,已知点A(﹣4,﹣1)、B(﹣2,1),将线段AB平移至线段CD,使点A的对应点C在x轴的正半轴上,点D在第一象限.
(1)若点C的坐标(k,0),求点D的坐标(用含k的式子表示);
(2)连接BD、BC,若三角形BCD的面积为5,求k的值;
(3)如图2,分别作∠ABC和∠ADC的平分线,它们交于点P,请写出∠A、和∠P和∠BCD之间的一个等量关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com