【题目】如图,如图1,在平面直角坐标系中,已知点A(﹣4,﹣1)、B(﹣2,1),将线段AB平移至线段CD,使点A的对应点C在x轴的正半轴上,点D在第一象限.
(1)若点C的坐标(k,0),求点D的坐标(用含k的式子表示);
(2)连接BD、BC,若三角形BCD的面积为5,求k的值;
(3)如图2,分别作∠ABC和∠ADC的平分线,它们交于点P,请写出∠A、和∠P和∠BCD之间的一个等量关系,并说明理由.
【答案】(1)D(k+2,2);(2)k=2;(3)∠BPD=∠BCD+∠A,理由详见解析
【解析】
(1)由平移的性质可得出答案;
(2)过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,由四边形BEFD的面积可得出答案;
(3)过点P作PE∥AB得出∠PBA=∠EPB,由平移的性质得出AB∥CD,由平行线的性质得出PE∥CD,则∠EPD=∠PDC,得出∠BPD=∠PBA+∠PDC,由角平分线的性质得出∠PBA=∠ABC,∠PDC=∠ADC,即可得出结论.
解:(1)∵点A(﹣4,﹣1)、B(﹣2,1),C(k,0),将线段AB平移至线段CD,
∴点B向上平移一个单位,向右平移(k+4)个单位到点D,
∴D(k+2,2);
(2)如图1,过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,
∵A(﹣4,﹣1)、B(﹣2,1),C(k,0),D(k+2,2),
∴BE=1,CE=k+2,DF=2,EF=k+4,CF=2,
∵S四边形BEFD=S△BEC+S△DCF+S△BCD,
∴=,
解得:k=2.
(3)∠BPD=∠BCD+∠A;理由如下:
过点P作PE∥AB,如图2所示:
∴∠PBA=∠EPB,
∵线段AB平移至线段CD,
∴AB∥CD,
∴PE∥CD,∠ADC=∠A,∠ABC=∠BCD,
∴∠EPD=∠PDC,
∴∠BPD=∠PBA+∠PDC,
∵BP平分∠ABC,DP平分∠ADC,
∴∠PBA=∠ABC,∠PDC=∠ADC,
∴∠BPD=∠ABC+∠ADC=∠BCD+∠A.
科目:初中数学 来源: 题型:
【题目】(1计算:;
(2)解不等式组
请结合题意填空,完成本题的解答:
解不等式(1),得______________.
解不等式(2),得_______________.
把不等式(1)和(2)的解集在数轴上表示出来
∴原不等式组的解集为_________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AD∥BC,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E,试说明AB∥DC,把下面的说理过程补充完整.
证明:∵AD∥BC(已知)
∴∠2=∠E(___________________________)
∵AE平分∠BAD(已知)
∴∠1=∠2 (_________________________)
∴∠1=∠E(___________________________)
∵∠CFE=∠E(已知)
∴∠1=∠______(______________________)
∴AB∥CD(_________________________________)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线直线,垂足为,如图放置,过点作交直线于点,在内取一点,连接,.
(1)若,,则_______.
(2)若,,则_______°.(用含的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,时注满水槽,水槽内水面的高度与注水时间之间的函数图像如图2所示.如果将正方体铁块取出,又经过____秒恰好将水槽注满.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,△ABC是等边三角形,D、E分别为边BC和AC上的点,且BD=CE,过D作BE的平行线,过E作BC的平行线,它们交于点F,连接AF.
(1)求证:△ABE≌△CAD;
(2)试判断△ADF的形状,并说明理由;
(3)若将D、E分别移为边CB的延长线和AC的延长线上的点,其它条件不变(如图②),则△ADF的形状是否改变,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够, 导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格.
请回答下列问题:
时间 | 第一天7:00﹣8:00 | 第二天7:00﹣8:00 | 第三天7:00﹣8:00 | 第四天7:00﹣8:00 | 第五天7:00﹣8:00 |
需要租用自行车却未租到车的人数(人) | 1500 | 1200 | 1300 | 1300 | 1200 |
(1)表格中的五个数据(人数)的中位数是多少?
(2)由随机抽样估计,平均每天在7:00-8:00 :需要租用公共自行车的人数是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com