精英家教网 > 初中数学 > 题目详情

【题目】如图,AB⊙O的直径,点E上的一点,∠DBC=∠BED

1)求证:BC⊙O的切线;

2)已知AD=3CD=2,求BC的长.

【答案】(1)证明见解析

(2)BC=

【解析】

试题(1AB⊙O的直径,得∠ADB=90°,从而得出∠BAD=∠DBC,即∠ABC=90°,即可证明BC⊙O的切线;

2)可证明△ABC∽△BDC,则,即可得出BC=

试题解析:(1∵AB⊙O的切直径,

∴∠ADB=90°

∵∠BAD=∠BED∠BED=∠DBC

∴∠BAD=∠DBC

∴∠BAD+∠ABD=∠DBC+∠ABD=90°

∴∠ABC=90°

∴BC⊙O的切线;

2)解:∵∠BAD=∠DBC∠C=∠C

∴△ABC∽△BDC

,即BC2=ACCD=AD+CDCD=10

∴BC=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800/分的速度匀速从乙地到甲地,两人距离乙地的路程y()与小张出发后的时间x()之间的函数图象如图所示.

(1)求小张骑自行车的速度;

(2)求小张停留后再出发时yx之间的函数表达式;

(3)求小张与小李相遇时x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABO

(1)点A关于x轴对称的点的坐标为_________,点B关于y轴对称的点的坐标为_________;

(2)判断△ABO的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线轴,轴分别交于点上的一点,若将沿折叠,点恰好落在轴上的点处,则直线的解析式为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知yx 的函数,自变量x的取值范围是x >0,下表是yx 的几组对应值.

x

···

1

2

3

5

7

9

···

y

···

1.98

3.95

2.63

1.58

1.13

0.88

···

小腾根据学习一次函数的经验,利用上述表格所反映出的yx之间的变化规律,对该函数的图象与性质进行了探究.

下面是小腾的探究过程,请补充完整:

(1)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;

(2)根据画出的函数图象,写出:

x=4对应的函数值y约为________;

该函数的一条性质:__________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:若一个三角形中,其中有一个内角是另外一个内角的一半,则这样的三角形叫做半角三角形”. 例如:等腰直角三角形就是半角三角形”.在钝角三角形中,,过点的直线边于点.点在直线上,且

1)若,点延长线上.

,点恰好为中点时,依据题意补全图1.请写出图中的一个半角三角形_______;

如图2,若,图中是否存在半角三角形除外),若存在,请写出图中的半角三角形,并证明;若不存在,请说明理由;

2)如图3,若,保持的度数与(1)中②的结论相同,请直接写出 满足的数量关系:______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A在直线l上,点B在直线l外,点B关于直线l的对称点为C,连接AC,过点BBDAC于点D,延长BDE使BE=AB,连接AE并延长与BC的延长线交于点F.

1)补全图形;

2)若∠BAC=2α,求出∠AEB的大小(用含α的式子表示);

3)用等式表示线段EFBC的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A、C的坐标分别为A(﹣3,0),C(1,0),

(1)求过点A、B的直线的函数表达式;

(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;

(3)在(2)的条件下,如P、Q分别是ABAD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m使得以点A、P、Q为顶点的三角形与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.

查看答案和解析>>

同步练习册答案