精英家教网 > 初中数学 > 题目详情

【题目】某汽车租赁公司要购买轿车和面包车共辆.其中面包车不能超过轿车的两倍,轿车每辆万元,面包车每辆万元,公司可投入的购车款不超过61万元.

(小题1)符合公司要求的购买方案有哪几种?请说明理由.

(小题2)如果每辆轿车的日租金为元,每辆面包车的日租金为元.假设新购买的这辆车每日都可租出,要使这辆车的日租金收入不低于1600元,那么应选择以上哪种购买方案?

【答案】1】符合公司要求的购买方案有四种,理由见详解;

2】要使这10辆车的日租金收入不低于1600元,那么应选择面包车购买3辆,轿车购买7辆或选择面包车购买4辆,轿车购买6.

【解析】

1)设面包车购买x辆,根据某汽车租赁公司要购买轿车和面包车共10辆.其中面包车不能超过轿车的两倍,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过61万元可列不等式求解.
2)根据求出的方案,可依次求出每种方案的租金,求出符合要求的方案.

1)设面包车购买x辆,依题意得:

解这个不等式组得:3x

根据题意,x应为正整数,∴x=3456

x=310x=7

x=410x=6

x=510x=5

x=610x=4

答:符合公司要求的购买方案有四种.

(2)方案一租金收入:110×3+200×7=1730()

方案二日租金收入:110×4+200×6=1640()

方案三日租金收入:110×5+200×5=1550()

方案四日租金收入:110×6+200×4=1460()

答:要使这10辆车的日租金收入不低于1600元,那么应选择面包车购买3辆,轿车购买7辆或选择面包车购买4辆,轿车购买6.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算

1 1-1-+×-24

2 1×--×2+-+

3)(-119×5

4)(÷2÷|-|+-14+0.252003×42003

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一个菱形的两个顶点与一个正方形的两个顶点重合,并且这两个四边形没有公共边,菱形的面积为24cm2,正方形的面积为32cm2,则菱形的边长为______________cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数y= (k≠0)与一次函数y=x+5的一个交点是A(1,n).

(1)求反比例函数y= (k≠0)的表达式;

(2)当一次函数的函数值大于反比例函数的函数值时,直接写出自变量x的取值范围为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中国高铁近年来用震惊世界的速度不断发展,已成为当代中国一张耀眼的“国家名片”。修建高铁时常常要逢山开道、遇水搭桥。如图,某高铁在修建时需打通一直线隧道MN(MN为山的两侧),工程人员为了计算MN两点之间的直线距离,选择了在测量点ABC进行测量,点BC分别在AMAN上,现测得AM=1200米,AN=2000米,AB=30米,BC=45米,AC=18米,求直线隧道MN的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.

根据图中提供的信息回答下列问题:

(1)小明家到学校的路程是多少米?

(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分?

(3)小明在书店停留了多少分钟?

(4)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

1-12017+(π-3)0+-

2(-a)3a2+(2a4)2÷a3

3 6 (-x2-xy+y2)(-xy

4 x2-(x+2) (x-2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着手机的普及,微信一种聊天软件的兴起,许多人抓住这种机会,做起了微商,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况超额记为正,不足记为负单位:斤

星期

与计划量的差值

(1)根据记录的数据可知前三天共卖出 ______ 斤;

(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 ______ 斤;

(3)本周实际销售总量达到了计划数量没有?

(4)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,EBC边的中点,将ABE沿AE所在的直线折叠得到AFE,延长AFCD于点G,已知CG2DG1,则BC的长是(  )

A.3B.2C.2D.2

查看答案和解析>>

同步练习册答案